更改

跳到导航 跳到搜索
删除45字节 、 2020年10月15日 (四) 10:41
第11行: 第11行:  
在'''<font color="#ff8000">正则图 Regular Graph</font>'''中,每个顶点都具有相同的度数,因此我们可以将其称之为该图的度数。一个'''<font color="#ff8000">完全图 Complete Graph</font>'''(表示为<math>K_n</math>,其中<math>n</math>是图中顶点的数目)是一种特殊的正则图,它所有顶点都有最大度值,<math>n-1</math>。
 
在'''<font color="#ff8000">正则图 Regular Graph</font>'''中,每个顶点都具有相同的度数,因此我们可以将其称之为该图的度数。一个'''<font color="#ff8000">完全图 Complete Graph</font>'''(表示为<math>K_n</math>,其中<math>n</math>是图中顶点的数目)是一种特殊的正则图,它所有顶点都有最大度值,<math>n-1</math>。
   −
==<font color="#ff8000">握手引理<font color="#ff8000">==
+
==握手引理==
    
The '''degree sum formula''' states that, given a graph <math>G=(V, E)</math>,
 
The '''degree sum formula''' states that, given a graph <math>G=(V, E)</math>,
第26行: 第26行:     
此公式表明,在任何无向图中,拥有奇数度值的顶点的个数是偶数。这一阐释(以及度和公式)被称为'''<font color="#ff8000">握手引理 Handshaking Lemma</font>'''。该名称来自一个有趣的数学问题,即求证无论该群体内有多少人,与奇数个人握过手的人数总是偶数。
 
此公式表明,在任何无向图中,拥有奇数度值的顶点的个数是偶数。这一阐释(以及度和公式)被称为'''<font color="#ff8000">握手引理 Handshaking Lemma</font>'''。该名称来自一个有趣的数学问题,即求证无论该群体内有多少人,与奇数个人握过手的人数总是偶数。
      
==度序列==
 
==度序列==
863

个编辑

导航菜单