第73行: |
第73行: |
| 概览 | | 概览 |
| | | |
− | 系统生物学具有利用跨学科工具从多个实验来源获取、整合和分析复杂数据集的能力,一些典型的技术平台包括:表型组学,即生物表型在其生命周期内的变化。基因组学,即生物脱氧核糖核酸序列、包括生物内部细胞特异性变异(例如端粒长度变化);表观基因组学或表观遗传学,生命体和相应的细胞特异性转录调控因子没有经验性地编码在基因组序列中(例如 DNA 甲基化、组蛋白乙酰化和脱乙酰化等);转录组学,通过 DNA 微阵列或基因表达的系列分析来测量生物体、组织或整个细胞的基因表达。干扰素组学,即生物体、组织或细胞水平的转录校正因子(例如RNA干扰) ; 蛋白质组学,通过二维凝胶电泳、质谱法或多维蛋白质识别技术(先进的高效液相色谱系统加上质谱法),进行生物体、组织或细胞水平的蛋白质和多肽测量。子学科包括磷酸蛋白质组学、糖蛋白质组学和其他检测化学修饰蛋白质的方法。代谢组学,测量有机体、细胞或组织水平系统中被称为代谢物的小分子; 糖组学,有机体、组织或细胞水平的碳水化合物测量; 脂质组学,有机体、组织或细胞水平的脂质测量。<ref name=":1">{{Cite journal|last=Cascante|first=Marta|last2=Marin|first2=Silvia|date=2008-09-30|title=Metabolomics and fluxomics approaches|journal=Essays in Biochemistry|language=en|volume=45|pages=67–82|doi=10.1042/bse0450067|pmid=18793124|issn=0071-1365}}</ref> | + | 系统生物学具有利用跨学科工具从多个实验来源获取、整合和分析复杂数据集的能力,一些典型的技术平台包括:表型组学,即生物表型在其生命周期内的变化。基因组学,即生物脱氧核糖核酸序列、包括生物内部细胞特异性变异(例如端粒长度变化);表观基因组学或表观遗传学,生命体和相应的细胞特异性转录调控因子没有经验性地编码在基因组序列中(例如 DNA 甲基化、组蛋白乙酰化和脱乙酰化等);转录组学,通过 DNA 微阵列或基因表达的系列分析来测量生物体、组织或整个细胞的基因表达。干扰素组学,即生物体、组织或细胞水平的转录校正因子(例如RNA干扰) ; 蛋白质组学,通过二维凝胶电泳、质谱法或多维蛋白质识别技术(先进的高效液相色谱系统加上质谱法),进行生物体、组织或细胞水平的蛋白质和多肽测量。子学科包括磷酸蛋白质组学、糖蛋白质组学和其他检测化学修饰蛋白质的方法。代谢组学,测量有机体、细胞或组织水平系统中被称为代谢物的小分子;糖组学,有机体、组织或细胞水平的碳水化合物测量;脂质组学,有机体、组织或细胞水平的脂质测量。<ref name=":1">{{Cite journal|last=Cascante|first=Marta|last2=Marin|first2=Silvia|date=2008-09-30|title=Metabolomics and fluxomics approaches|journal=Essays in Biochemistry|language=en|volume=45|pages=67–82|doi=10.1042/bse0450067|pmid=18793124|issn=0071-1365}}</ref> |
| | | |
| | | |
− | 除了识别和定量化上述给定的分子之外,有进一步的技术来分析细胞内的动力学和相互作用。研究的相互作用包括生物、组织、细胞和细胞内分子的相互作用(相互作用组学)。<ref>{{Cite journal|last=Cusick|first=Michael E.|last2=Klitgord|first2=Niels|last3=Vidal|first3=Marc|last4=Hill|first4=David E.|date=2005-10-15|title=Interactome: gateway into systems biology|journal=Human Molecular Genetics|language=en|volume=14|issue=suppl_2|pages=R171–R181|doi=10.1093/hmg/ddi335|pmid=16162640|issn=0964-6906|doi-access=free}}</ref>目前,在这一领域的权威分子学科,尽管这一效用的定义并不仅仅局限于该领域,也有其它分子学科的作用。这些分子学科包括: 神经电动力学,这是一个有机体网络,其中大脑的计算功能作为一个动态系统,包括潜在的生物物理机制和新兴的电力相互作用的计算<ref>{{Cite journal|last=Aur|first=Dorian|date=2012|title=From Neuroelectrodynamics to Thinking Machines|journal=Cognitive Computation|language=en|volume=4|issue=1|pages=4–12|doi=10.1007/s12559-011-9106-3|issn=1866-9956}}</ref>;流体学,测量一个系统里分子随着时间的动态变化,如细胞、组织或有机体;<ref>{{Cite journal|last=Diez|first=Mikel|last2=Petuya|first2=Víctor|last3=Martínez-Cruz|first3=Luis Alfonso|last4=Hernández|first4=Alfonso|date=2011-12-01|title=A biokinematic approach for the co--mputational simulation of proteins molecular mechanism|journal=Mechanism and Machine Theory|volume=46|issue=12|pages=1854–1868|doi=10.1016/j.mechmachtheory.2011.07.013|issn=0094-114X}}</ref>在处理系统生物学问题时,有两种主要的方法。它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。<ref>{{Cite journal|title=Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism|last=Loor|first=Khuram Shahzad and Juan J.|date=2012-07-31|journal=Current Genomics|volume=13|issue=5|pages=379–394|language=en|doi=10.2174/138920212801619269|pmc=3401895|pmid=23372424}}</ref> | + | 除了识别和定量化上述给定的分子之外,有进一步的技术来分析细胞内的动力学和相互作用。研究的相互作用包括生物、组织、细胞和细胞内分子的相互作用(相互作用组学)。<ref>{{Cite journal|last=Cusick|first=Michael E.|last2=Klitgord|first2=Niels|last3=Vidal|first3=Marc|last4=Hill|first4=David E.|date=2005-10-15|title=Interactome: gateway into systems biology|journal=Human Molecular Genetics|language=en|volume=14|issue=suppl_2|pages=R171–R181|doi=10.1093/hmg/ddi335|pmid=16162640|issn=0964-6906|doi-access=free}}</ref>目前,在这一领域的权威分子学科,尽管这一效用的定义并不仅仅局限于该领域,也有其它分子学科的作用。这些分子学科包括: 神经电动力学,这是一个有机体网络,其中大脑的计算功能作为一个动态系统,包括潜在的生物物理机制和新兴的电力相互作用的计算<ref>{{Cite journal|last=Aur|first=Dorian|date=2012|title=From Neuroelectrodynamics to Thinking Machines|journal=Cognitive Computation|language=en|volume=4|issue=1|pages=4–12|doi=10.1007/s12559-011-9106-3|issn=1866-9956}}</ref>;流体学,测量一个系统里分子随着时间的动态变化,如细胞、组织或有机体;<ref>{{Cite journal|last=Diez|first=Mikel|last2=Petuya|first2=Víctor|last3=Martínez-Cruz|first3=Luis Alfonso|last4=Hernández|first4=Alfonso|date=2011-12-01|title=A biokinematic approach for the co--mputational simulation of proteins molecular mechanism|journal=Mechanism and Machine Theory|volume=46|issue=12|pages=1854–1868|doi=10.1016/j.mechmachtheory.2011.07.013|issn=0094-114X}}</ref>在处理系统生物学问题时,有两种主要的方法。它们分别是自上而下和自下而上的方法。自上而下的方法尽可能多把系统考虑在内,并且在很大程度上依赖于实验结果。RNA-seq 技术是自上而下实验方法的一个例子。相反,自下而上的方法用于创建详细的模型,同时也结合了实验数据。自下而上方法的一个例子是使用电路模型来描述一个简单的基因网络。<ref>{{Cite journal|title=Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism|last=Loor|first=Khuram Shahzad and Juan J.|date=2012-07-31|journal=Current Genomics|volume=13|issue=5|pages=379–394|language=en|doi=10.2174/138920212801619269|pmc=3401895|pmid=23372424}}</ref> |
| | | |
| | | |
第85行: |
第85行: |
| | | |
| | | |
− | 这些研究经常与大规模的微扰方法结合,包括基于基因的(RNA干扰,野生型和突变型基因的错误表达)和使用小分子库的化学方法。机器人和自动化传感器使这种大规模的实验和数据采集成为可能。这些技术仍在出现,并且很多面临产生的数据量越大,质量就越低的问题。各种各样的定量科学家(计算生物学家、统计学家、数学家、计算机科学家和物理学家)正在努力提高这些方法的质量,并创建、完善和重新测试模型,以准确地反映观测结果。
| + | 这些研究经常与大规模的微扰方法结合,包括基于基因的(RNA干扰,野生型和突变型基因的错误表达)和使用小分子库的化学方法。机器人和自动化传感器使这种大规模的实验和数据采集成为可能。这些技术仍在出现,并且很多面临产生的数据量越大,质量就越低的问题。各种各样的定量科学家(计算生物学家、统计学家、数学家、计算机科学家和物理学家)正在努力提高这些方法的质量,并创建、完善和重新测试模型,以准确地反映观测结果。 |
| | | |
| | | |