第243行: |
第243行: |
| Consider a given random graph model defined on the probability space <math>(\Omega, \mathcal{F}, P)</math> and let <math>\mathcal{P}(G) : \Omega \rightarrow R^{m}</math> be a real valued function which assigns to each graph in <math>\Omega</math> a vector of m properties. | | Consider a given random graph model defined on the probability space <math>(\Omega, \mathcal{F}, P)</math> and let <math>\mathcal{P}(G) : \Omega \rightarrow R^{m}</math> be a real valued function which assigns to each graph in <math>\Omega</math> a vector of m properties. |
| | | |
− | 考虑一个给定的随机图模型定义在概率空间上<math>(\Omega,\mathcal{F},P)</math> ,并且让 <math>\mathcal{P}(G):\Omega\tarrow R^{m}</math> 是一个真正的值函数,它在 <math>\Omega</math> 中为每个图赋值一个 ''m'' 属性的向量。 | + | 考虑一个给定的随机图模型定义在概率空间上<math>(\Omega,\mathcal{F},P)</math> ,并且让 <math>\mathcal{P}(G):\Omega\tarrow R^{m}</math> 是一个值是实数的函数,它在 <math>\Omega</math> 中为每个图赋值一个 ''m'' 属性的向量。 |
| | | |
| For a fixed <math>\mathbf{p} \in R^{m}</math>, ''conditional random graphs'' are models in which the probability measure <math>P</math> assigns zero probability to all graphs such that '<math>\mathcal{P}(G) \neq \mathbf{p} </math>. | | For a fixed <math>\mathbf{p} \in R^{m}</math>, ''conditional random graphs'' are models in which the probability measure <math>P</math> assigns zero probability to all graphs such that '<math>\mathcal{P}(G) \neq \mathbf{p} </math>. |
第257行: |
第257行: |
| Special cases are conditionally uniform random graphs, where <math>P</math> assigns equal probability to all the graphs having specified properties. They can be seen as a generalization of the Erdős–Rényi model G(n,M), when the conditioning information is not necessarily the number of edges M, but whatever other arbitrary graph property <math>\mathcal{P}(G)</math>. In this case very few analytical results are available and simulation is required to obtain empirical distributions of average properties. | | Special cases are conditionally uniform random graphs, where <math>P</math> assigns equal probability to all the graphs having specified properties. They can be seen as a generalization of the Erdős–Rényi model G(n,M), when the conditioning information is not necessarily the number of edges M, but whatever other arbitrary graph property <math>\mathcal{P}(G)</math>. In this case very few analytical results are available and simulation is required to obtain empirical distributions of average properties. |
| | | |
− | 特殊情况是'''<font color="#FF8000">条件均匀随机图 Conditionally Uniform Graph </font>''',其中 <math>p</math> 给所有具有指定性质的图赋予相等的概率。它们可以被看作是 Erdős–Rényi 模型 ''G''(''n'',''m'')的一个推广,当条件信息不一定是边的个数 ''M'',而是其他任意图性质 <math>\mathcal{P}(G)</math> 时。在这种情况下,很少有分析结果可用,需要模拟来获得平均性质的经验分布。 | + | 特殊情况是'''<font color="#FF8000">条件均匀随机图 Conditionally Uniform Graph </font>''',其中 <math>p</math> 给所有具有指定性质的图赋予相等的概率。它们可以被看作是 Erdős–Rényi 模型 ''G''(''n'',''m'')的一个推广,当条件信息不一定是边的个数 ''M'',而是其他任意图性质 <math>\mathcal{P}(G)</math> 时。在这种情况下,很少有分析结果可用,就需要通过模拟来获得平均性质的经验分布。 |
| | | |
| ==Interdependent graphs== | | ==Interdependent graphs== |