第41行: |
第41行: |
| | pdf_image = Probability mass function for the binomial distribution | | | pdf_image = Probability mass function for the binomial distribution |
| | | |
− | 2012年3月24日 | pdf 图片 = 概率质量函数二项分布 | + | 2012年3月24日 | pdf 图片 = '''<font color="#ff8000">概率质量函数二项分布</font>''' |
| | | |
| | cdf_image = [[File:Binomial distribution cdf.svg|300px|Cumulative distribution function for the binomial distribution]] | | | cdf_image = [[File:Binomial distribution cdf.svg|300px|Cumulative distribution function for the binomial distribution]] |
第47行: |
第47行: |
| | cdf_image = Cumulative distribution function for the binomial distribution | | | cdf_image = Cumulative distribution function for the binomial distribution |
| | | |
− | 2012年3月24日 | cdf 图像 = 累积分布函数二项分布 | + | 2012年3月24日 | cdf 图像 = '''<font color="#ff8000">累积分布函数二项分布</font>''' |
− | | |
| | notation = <math>B(n,p)</math> | | | notation = <math>B(n,p)</math> |
| | | |
第161行: |
第160行: |
| In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own boolean-valued outcome: success/yes/true/one (with probability p) or failure/no/false/zero (with probability q = 1 − p). | | In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own boolean-valued outcome: success/yes/true/one (with probability p) or failure/no/false/zero (with probability q = 1 − p). |
| | | |
− | 在概率论和统计学中,参数为 n 和 p 的二项分布是 n 个独立实验序列中成功次数的离散概率分布,每个实验询问一个 是-否 问题,每个实验都有自己的布尔值结果: 成功/是/正确/一 (概率为 p)或 失败/否/错误/零 (概率为 q = 1-p)。 | + | 在概率论和统计学中,参数为 n 和 p 的'''<font color="#ff8000">二项分布</font>'''是 n 个独立实验序列中成功次数的'''<font color="#ff8000">离散概率分布</font>''',每个实验询问一个 是-否 问题,每个实验都有自己的布尔值结果: 成功/是/正确/一 (概率为 p)或 失败/否/错误/零 (概率为 q = 1-p)。 |
| | | |
| | | |
第168行: |
第167行: |
| A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance. | | A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance. |
| | | |
− | 一个单一的结果为成功/失败的实验也被称为伯努利试验或伯努利实验,一系列伯努利实验结果被称为伯努利过程; 对于一个单一的实验,例如,n = 1,这个二项分布是一个伯努利分布。二项分布是流行统计显著性二项检验的基础。 | + | 一个单一的结果为成功/失败的实验也被称为'''<font color="#ff8000">伯努利试验</font>'''或伯努利实验,一系列伯努利实验结果被称为'''<font color="#ff8000">伯努利过程</font>'''; 对于一个单一的实验,例如,n = 1,这个二项分布是一个'''<font color="#ff8000">伯努利分布</font>'''。二项分布是流行'''<font color="#ff8000">统计显著性</font>''''''<font color="#ff8000">二项检验</font>'''的基础。 |
| | | |
| | | |
第175行: |
第174行: |
| The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than n, the binomial distribution remains a good approximation, and is widely used. | | The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than n, the binomial distribution remains a good approximation, and is widely used. |
| | | |
− | 二项分布经常被用来模拟大小为 n 的样本中的成功数量,这些样本是用 大小为N的种群中的替代物抽取的。如果抽样没有更换,抽样就不是独立的,所以得到的分布是超几何分布,而不是二项分布。然而,对于 N 比 n 大得多的情况,二项分布仍然是一个很好的近似值,并且被广泛使用。 | + | 二项分布经常被用来模拟大小为 n 的样本中的成功数量,这些样本是用 大小为N的种群中的替代物抽取的。如果抽样没有更换,抽样就不是独立的,所以得到的分布是'''<font color="#ff8000">超几何分布</font>''',而不是二项分布。然而,对于 N 比 n 大得多的情况,二项分布仍然是一个很好的近似值,并且被广泛使用。 |
| | | |
| | | |
第192行: |
第191行: |
| In general, if the random variable X follows the binomial distribution with parameters n ∈ ℕ and p ∈ [0,1], we write X ~ B(n, p). The probability of getting exactly k successes in n independent Bernoulli trials is given by the probability mass function: | | In general, if the random variable X follows the binomial distribution with parameters n ∈ ℕ and p ∈ [0,1], we write X ~ B(n, p). The probability of getting exactly k successes in n independent Bernoulli trials is given by the probability mass function: |
| | | |
− | 一般来说,如果随机变量 x 服从参数 n ∈ N 和 p ∈[0,1]的二项分布,我们写作 x ~ b (n,p)。在 n 个独立的伯努利试验中获得 k 成功的概率是由'''<font color="#ff8000">概率质量函数</font>'''给出的:
| + | 一般来说,如果'''<font color="#ff8000">随机变量</font>''' x 服从参数 n ∈ N 和 p ∈[0,1]的二项分布,我们写作 x ~ b (n,p)。在 n 个独立的伯努利试验中获得 k 成功的概率是由'''<font color="#ff8000">概率质量函数</font>'''给出的: |
| | | |
| | | |
第224行: |
第223行: |
| is the binomial coefficient, hence the name of the distribution. The formula can be understood as follows. k successes occur with probability pk and n − k failures occur with probability (1 − p)n − k. However, the k successes can occur anywhere among the n trials, and there are \binom{n}{k} different ways of distributing k successes in a sequence of n trials. | | is the binomial coefficient, hence the name of the distribution. The formula can be understood as follows. k successes occur with probability pk and n − k failures occur with probability (1 − p)n − k. However, the k successes can occur anywhere among the n trials, and there are \binom{n}{k} different ways of distributing k successes in a sequence of n trials. |
| | | |
− | 是二项式系数,因而得名。这个公式可以理解为。K次成功发生在概率为 pk 的情况下, n-k 次失败发生在概率为(1-p) n-k 的情况下。然而,k 次成功可以发生在 n 个试验中的任何地方,并且在 n 个试验序列中有不同的 k 次成功的分配方法。
| + | 是'''<font color="#ff8000">二项式系数</font>''',因而得名。这个公式可以理解为。K次成功发生在概率为 pk 的情况下, n-k 次失败发生在概率为(1-p) n-k 的情况下。然而,k 次成功可以发生在 n 个试验中的任何地方,并且在 n 个试验序列中有不同的 k 次成功的分配方法。 |
| | | |
| | | |
第276行: |
第275行: |
| f(k, n, p) is monotone increasing for k < M and monotone decreasing for k > M, with the exception of the case where (n + 1)p is an integer. In this case, there are two values for which f is maximal: (n + 1)p and (n + 1)p − 1. M is the most probable outcome (that is, the most likely, although this can still be unlikely overall) of the Bernoulli trials and is called the mode. | | f(k, n, p) is monotone increasing for k < M and monotone decreasing for k > M, with the exception of the case where (n + 1)p is an integer. In this case, there are two values for which f is maximal: (n + 1)p and (n + 1)p − 1. M is the most probable outcome (that is, the most likely, although this can still be unlikely overall) of the Bernoulli trials and is called the mode. |
| | | |
− | F (k,n,p)对 k < m 是单调递增的,对 k > m 是单调递减的,但(n + 1) p 是整数的情况除外。在这种情况下,有两个值使 f 是最大的: (n + 1) p 和(n + 1) p-1。M 是伯努利试验最有可能的结果(也就是说,最有可能的结果,尽管总的来说仍然存在不发生的情况) ,被称为模。 | + | F (k,n,p)对 k < m 是单调递增的,对 k > m 是单调递减的,但(n + 1) p 是整数的情况除外。在这种情况下,有两个值使 f 是最大的: (n + 1) p 和(n + 1) p-1。M 是伯努利试验最有可能的结果(也就是说,最有可能的结果,尽管总的来说仍然存在不发生的情况) ,被称为'''<font color="#ff8000">模</font>'''。 |
| | | |
| | | |
第288行: |
第287行: |
| Suppose a biased coin comes up heads with probability 0.3 when tossed. The probability of seeing exactly 4 heads in 6 tosses is | | Suppose a biased coin comes up heads with probability 0.3 when tossed. The probability of seeing exactly 4 heads in 6 tosses is |
| | | |
− | 假设抛出一枚有偏差的硬币时,正面朝上的概率为0.3。在6次抛掷中正好看到4个正面的概率是
| + | 假设抛出一枚'''<font color="#ff8000">有偏硬币</font>'''时,正面朝上的概率为0.3。在6次抛掷中正好看到4个正面的概率是 |
| | | |
| | | |
第310行: |
第309行: |
| The cumulative distribution function can be expressed as: | | The cumulative distribution function can be expressed as: |
| | | |
− | 累积分布函数可以表达为:
| + | '''<font color="#ff8000">累积分布函数</font>'''可以表达为: |
| | | |
| | | |
第326行: |
第325行: |
| where \lfloor k\rfloor is the "floor" under k, i.e. the greatest integer less than or equal to k. | | where \lfloor k\rfloor is the "floor" under k, i.e. the greatest integer less than or equal to k. |
| | | |
− | 是 k 下面的”楼层” ,也就是。小于或等于 k 的最大整数。 | + | 是 k 下面的”楼层” ,也就是。小于或等于 k 的'''<font color="#ff8000">最大整数</font>'''。 |
| | | |
| | | |
第334行: |
第333行: |
| It can also be represented in terms of the regularized incomplete beta function, as follows: | | It can also be represented in terms of the regularized incomplete beta function, as follows: |
| | | |
− | 它也可以用正则化不完全 beta 函数来表示,如下:
| + | 它也可以用'''<font color="#ff8000">正则化不完全 beta 函数</font>'''来表示,如下: |
| | | |
| | | |
第406行: |
第405行: |
| If X ~ B(n, p), that is, X is a binomially distributed random variable, n being the total number of experiments and p the probability of each experiment yielding a successful result, then the expected value of X is: | | If X ~ B(n, p), that is, X is a binomially distributed random variable, n being the total number of experiments and p the probability of each experiment yielding a successful result, then the expected value of X is: |
| | | |
− | 如果 x ~ b (n,p) ,即 x 是一个服从二项分布的随机变量,n 是实验的总数,p 是每个实验产生成功结果的概率,那么 x 的期望值是: | + | 如果 x ~ b (n,p) ,即 x 是一个服从二项分布的随机变量,n 是实验的总数,p 是每个实验产生成功结果的概率,那么 x 的'''<font color="#ff8000">期望值</font>'''是: |
| | | |
| | | |
第436行: |
第435行: |
| The variance is: | | The variance is: |
| | | |
− | 方差是:
| + | '''<font color="#ff8000">方差</font>'''是: |
| | | |
| :<math> \operatorname{Var}(X) = np(1 - p).</math> | | :<math> \operatorname{Var}(X) = np(1 - p).</math> |
第524行: |
第523行: |
| Usually the mode of a binomial B(n, p) distribution is equal to \lfloor (n+1)p\rfloor, where \lfloor\cdot\rfloor is the floor function. However, when (n + 1)p is an integer and p is neither 0 nor 1, then the distribution has two modes: (n + 1)p and (n + 1)p − 1. When p is equal to 0 or 1, the mode will be 0 and n correspondingly. These cases can be summarized as follows: | | Usually the mode of a binomial B(n, p) distribution is equal to \lfloor (n+1)p\rfloor, where \lfloor\cdot\rfloor is the floor function. However, when (n + 1)p is an integer and p is neither 0 nor 1, then the distribution has two modes: (n + 1)p and (n + 1)p − 1. When p is equal to 0 or 1, the mode will be 0 and n correspondingly. These cases can be summarized as follows: |
| | | |
− | 通常二项式 b (n,p)分布的模等于 lfloor (n + 1) p 楼层,其中 lfloor cdot 楼层是下限函数。然而,当(n + 1) p 是整数且 p 既不是0也不是1时,分布有两种模: (n + 1) p 和(n + 1) p-1。当 p 等于0或1时,模将相应地为0和 n。这些情况可概述如下: | + | 通常二项式 b (n,p)分布的'''<font color="#ff8000">模</font>'''等于 lfloor (n + 1) p 楼层,其中 lfloor cdot 楼层是'''<font color="#ff8000">下限函数</font>'''。然而,当(n + 1) p 是整数且 p 既不是0也不是1时,分布有两种模: (n + 1) p 和(n + 1) p-1。当 p 等于0或1时,模将相应地为0和 n。这些情况可概述如下: |
| | | |
| | | |
第661行: |
第660行: |
| In general, there is no single formula to find the median for a binomial distribution, and it may even be non-unique. However several special results have been established: | | In general, there is no single formula to find the median for a binomial distribution, and it may even be non-unique. However several special results have been established: |
| | | |
− | 一般来说,没有单一的公式可以找到一个二项分布的中位数,甚至可能是非唯一的。然而,已经确立了若干特别成果:
| + | 一般来说,没有单一的公式可以找到一个二项分布的'''<font color="#ff8000">中位数</font>''',甚至可能是非唯一的。然而,已经确立了若干特别成果: |
| | | |
| * If ''np'' is an integer, then the mean, median, and mode coincide and equal ''np''.<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=German}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref> | | * If ''np'' is an integer, then the mean, median, and mode coincide and equal ''np''.<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=German}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref> |