更改

跳到导航 跳到搜索
删除9,252字节 、 2020年10月25日 (日) 16:07
第1行: 第1行: −
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。{{Short description|Measure of relative information in probability theory}}
+
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
 
      +
{{Short description|Measure of relative information in probability theory}}
    
{{Information theory}}
 
{{Information theory}}
  −
  −
  −
        第15行: 第11行:  
[[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the joint entropy <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the individual entropy <math>\Eta(X)</math>, with the red being the conditional entropy <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the mutual information <math>\operatorname{I}(X;Y)</math>.]]
 
[[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the joint entropy <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the individual entropy <math>\Eta(X)</math>, with the red being the conditional entropy <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the mutual information <math>\operatorname{I}(X;Y)</math>.]]
   −
显示加减关系的文氏图各种信息测量与相关变量数学 x / 数学和 y / 数学相关。两个圆所包含的面积是联合熵 math  Eta (x,y) / math。左边的圆圈(红色和紫色)是个体熵数学 Eta (x) / math,红色的是条件熵数学 Eta (x | y) / math。右边的圆(蓝色和紫色)是 math Eta (y) / math,蓝色的是 math Eta (y | x) / math。紫色是互信息 math operatorname { i }(x; y) / math. ]
+
文恩图显示了相加和相减的关系,各种信息测量与相关变量相关。两个圆圈所包含的区域是联合熵。左边的圆圈(红色和紫色)代表个体熵。左边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体。右边的圆圈(蓝色和紫色)是 < math > Eta (y) </math > ,蓝色的是 < math > Eta (y | x) </math > 。紫色是共同的信息[ math > 操作者名称{ i }(x; y) </math > ]
          +
In [[information theory]], the '''conditional entropy''' quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>.
    +
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in shannons, nats, or hartleys. The entropy of <math>Y</math> conditioned on <math>X</math> is written as <math>\Eta(Y|X)</math>.
   −
In [[information theory]], the '''conditional entropy''' (or '''equivocation''') quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>.
+
在信息论中,如果另一个随机变量的值是已知的,那么条件熵就会量化描述一个随机变量的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。“数学”的熵取决于“数学” ,“ x”表示“数学” ,“埃塔”表示“数学”。
   −
In information theory, the conditional entropy (or equivocation) quantifies the amount of information needed to describe the outcome of a random variable <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in shannons, nats, or hartleys. The entropy of <math>Y</math> conditioned on <math>X</math> is written as <math>\Eta(Y|X)</math>.
     −
在信息论中,假设另一个随机变量 math x / math 的值是已知的,信息条件熵量化描述随机变量 math y / math 的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。数学 y / 数学的熵以数学 x / 数学为条件,表示为数学 Eta (y | x) / 数学。
  −
  −
  −
  −
  −
  −
== Definition ==
      
== Definition ==
 
== Definition ==
  −
定义
      
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
第41行: 第29行:  
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
   −
数学 y / 数学给定数学 x / 数学的条件熵定义为
+
给定的 x 条件熵被定义为
 
  −
 
        第57行: 第43行:  
|indent =
 
|indent =
   −
不会有事的
+
2012年10月22日
    
|title=
 
|title=
第63行: 第49行:  
|title=
 
|title=
   −
标题
+
2012年10月11日
    
|equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}}
 
|equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}}
第69行: 第55行:  
|equation = }}
 
|equation = }}
   −
会公式开始
+
| equation = }
    
|cellpadding= 6
 
|cellpadding= 6
第75行: 第61行:  
|cellpadding= 6
 
|cellpadding= 6
   −
6号手术室
+
6
    
|border
 
|border
第93行: 第79行:  
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
   −
5 / fffa }
+
5/fffa }}
 
  −
 
        第103行: 第87行:  
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the support sets of <math>X</math> and <math>Y</math>.
 
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the support sets of <math>X</math> and <math>Y</math>.
   −
其中 math mathcal x / math 和 math mathcal y / math 表示数学 x / math 和数学 y / math 的支持集。
+
这里 < math > 数学 x </math > < math > > 数学 y </math > 表示 < math > x </math > 和 < math > y </math > 的支持集。
 
  −
 
        第111行: 第93行:  
''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
 
''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
   −
Note: It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
+
Note: It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math>
 
  −
注意: 对于固定数学 c 0 / math,表达式 math 0 log 0 / math 和 math 0 log c / 0 / math 应当被视为等于零。这是因为 math  theta 0 ^ + theta  log  theta 0 / math 和 math  theta 0 ^ + theta  log  theta 0 / math! -- 因为 p (x,y)仍然可以等于0,即使 p (x) ! 0和 p (y) ! 0.P (x,y) p (x)0怎么样?-->
  −
 
      +
注意: 常规的表达式 < math > 0 log 0 </math > 和 < math > 0 log c/0 </math > 对于 fixed < math > c > 0 </math > 应该被视为等于零。这是因为 < math > lim { theta to0 ^ + } theta,log,c/theta = 0 </math > 和 < math > lim { theta to0 ^ + } theta,log theta = 0 </math >
      第121行: 第101行:  
Intuitive explanation of the definition :  
 
Intuitive explanation of the definition :  
   −
Intuitive explanation of the definition :
+
The chain rule follows from the above definition of conditional entropy:
 
  −
对定义的直观解释:
  −
 
  −
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log_{2}( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
  −
 
  −
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log_{2}( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
  −
 
  −
根据定义,math  displaystyle h (y | x) mathbb { e }( f (x,y)) / math  displaystyle f: (x,y) righttarrow  log {2}( p (y | x))。 / math  displaystyle f / math 联想到 math  displaystyle (x,y) / math 数学数学 displaystyle (y) / math 给定的 math  displaystyle (x) / math,这是描述事件数学 displaystyle (y) / math 给定的 math (x) / math 所需的信息量。根据大数定律,math  displaystyle h (y | x) / math 是 math  displaystyle f (x,y) / math 的大量独立实现的算术平均数。
  −
 
  −
 
      +
链式规则遵循了上述条件熵的定义:
    +
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
          +
<math>\begin{align}
    +
1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3
    
== Motivation ==
 
== Motivation ==
   −
== Motivation ==
+
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
   −
动机
+
Eta (y | x) & = sum _ { x in mathcal x,y in mathcal y } p (x,y) log left (frac { p (x)}{ p (x,y)} right)[4 pt ]
    
Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
 
Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
   −
Let <math>\Eta(Y|X=x)</math> be the entropy of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have probability mass function <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
+
&= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
   −
设数学是离散型随机变量数学 y / math 的熵,条件是离散型随机变量数学 x / math 取一定值数学 x / math。用 math  mathcal x / math 和 math  mathcal y / math 表示数学 x / math 和数学 y / math 的支持集。让数学 y / 数学有概率质量函数 / 数学 p {(y)} / 数学。数学 y / math 的无条件熵计算为 math  Eta (y) :  mathbb { e }[ operatorname { i }(y)] / math,即。
+
& = sum _ { x in mathcal x,y in mathcal y } p (x,y)(log (p (x))-log (p (x,y)))[4 pt ]
          +
&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
    +
& =-sum _ { x in mathcal x,y in mathcal y } p (x,y) log (p (x,y)) + sum _ { x in mathcal x,y in mathcal y }{ p (x,y) log (p (x))}[4 pt ]
    
:<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}  
 
:<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}  
   −
<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}
+
& = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
   −
数学中的 Eta (y)(y)(y)(y)(y)(y)(y)
+
& = Eta (x,y) + sum _ { x in mathcal x } p (x) log (p (x))[4 pt ]
    
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
 
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
   −
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
+
& = \Eta(X,Y) - \Eta(X).
   −
- 和数学 y }{ py (y) log 2{ py (y)} ,/ math
+
& = Eta (x,y)-Eta (x).
          +
\end{align}</math>
    +
结束{ align } </math >
    
where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]:  
 
where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]:  
  −
where <math>\operatorname{I}(y_i)</math> is the information content of the outcome of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by conditional expectation:
  −
  −
其中 math  operatorname { i }(yi) / math 是取值 math y / math 的数学 y / math 结果的信息内容。数学 y / 数学的熵取决于数学 x / 数学的取值,数学 x / 数学的定义类似于条件期望的定义:
            +
In general, a chain rule for multiple random variables holds:
    +
一般来说,多个随机变量的链式规则适用于:
    
:<math>\Eta(Y|X=x)
 
:<math>\Eta(Y|X=x)
   −
<math>\Eta(Y|X=x)
+
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math>
   −
(y | x)
+
<math> \Eta(X_1,X_2,\ldots,X_n) =
   −
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}. </math>
+
< math > Eta (x1,x2,ldots,xn) =  
   −
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}. </math>
+
Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref>
 
  −
- 和数学 y }{ Pr (y | x) log 2{ Pr (y | x)}。数学
  −
 
  −
 
  −
 
  −
 
  −
 
  −
<math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take.
  −
 
  −
<math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take.
  −
 
  −
数学是对所有可能的数值求平均值的结果,数学 x / 数学可能需要。
      +
\sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>
    +
Sum { i = 1} ^ n Eta (x _ i | x _ 1,ldots,x _ { i-1}) </math >
      第209行: 第175行:  
Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}}
 
Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}}
   −
Given discrete random variables <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:
+
It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.
 
  −
给定离散随机变量数学 x / 数学 x / 数学 x / 数学 y / 数学 y / 数学,数学 y / 数学 x / 数学的条件熵定义为数学 x / 数学每个可能值的加权和,用数学 p (x) / 数学作为权重:
  −
 
      +
除了用加法代替乘法之外,它的形式与概率论的链式法则相似。
          
:<math>
 
:<math>
  −
<math>
  −
  −
数学
      
\begin{align}
 
\begin{align}
   −
\begin{align}
+
Bayes' rule for conditional entropy states
   −
Begin { align }
+
条件熵的贝叶斯规则
    
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
 
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
   −
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
+
<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
  −
数学 x 中的 Eta (y | x) ,p (x) ,Eta (y | x)
     −
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
+
[数学] Eta (y | x) ,= ,Eta (x | y)-Eta (x) + Eta (y)  
    
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
 
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
  −
数学 x } p (x) sum y } ,p (y | x) ,log,p (y | x)
      
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
 
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
   −
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
+
Proof. <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
  −
数学中的 x 和 y,p (x,y) ,log,p (y | x)
     −
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
+
证据。Eta (y | x) = Eta (x,y)-Eta (x) | math > Eta (x | y) = Eta (y,x)-Eta (y).对称意味着 Eta (x,y) = Eta (y,x)。减去这两个方程就得到了贝叶斯定律。
    
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
  −
数学 x,y = p (x,y) log,p (y | x)
      
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
   −
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
+
If <math>Y</math> is conditionally independent of <math>Z</math> given <math>X</math> we have:
   −
(x,y) log-frac { p (x,y)}{ p (x,y)}.\\
+
如果[数学] y </math > 是条件独立于[数学] z </math > 给定 < 数学 > x </math > 我们有:
 
  −
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
      
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
 
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
  −
(x,y) log  frac { p (x)}{ p (x,y)}.\\
      
\end{align}
 
\end{align}
   −
\end{align}
+
<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
   −
End { align }
+
[ math ] Eta (y | x,z) ,= ,Eta (y | x)
    
</math>
 
</math>
  −
</math>
  −
  −
数学
  −
  −
        第283行: 第225行:  
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
 
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
   −
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the Kullback-Leibler divergence, also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
+
For any <math>X</math> and <math>Y</math>:
   −
<! -- 本段不正确; 最后一行不是任何两个分布之间的 KL 散度,因为 p (x)[一般]不是 x 和 y 域上的有效分布。上面的最后一个公式是 Kullback-Leibler 的背离,也被称为相对熵。相对熵总是正的,只有当且仅当数学 p (x,y) p (x) / math 时才消失。这是当我们知道数学 x / 数学告诉我们关于数学 y / 数学的一切。补充: 这个评论是否过时了,因为 KL 的分歧没有在上面提到?2014年11月--
+
对于任意的 < math > x </math > < math > > y </math > :
          +
<math display="block">\begin{align}
    +
(数学显示 = “ block” > begin { align })
    
==Properties==
 
==Properties==
   −
==Properties==
+
  \Eta(Y|X) &\le \Eta(Y) \, \\
   −
属性
+
埃塔(y | x)及埃塔(y) ,
    
===Conditional entropy equals zero===
 
===Conditional entropy equals zero===
   −
===Conditional entropy equals zero===
+
  \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
   −
条件熵等于零
+
eta (x,y) & = Eta (x | y) + Eta (y | x) + 操作数名{ i }(x; y) ,qquad
    
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
 
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
   −
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
+
  \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
   −
Math  Eta (y | x)0 / math 当且仅当 math y / math 的值完全由 math x / math 的值决定。
+
Eta (x,y) & = Eta (x) + Eta (y)-操作员名称{ i }(x; y) ,,
          +
  \operatorname{I}(X;Y) &\le \Eta(X),\,
    +
操作者名{ i }(x; y) & le Eta (x) ,,
    
===Conditional entropy of independent random variables===
 
===Conditional entropy of independent random variables===
   −
===Conditional entropy of independent random variables===
+
\end{align}</math>
   −
独立随机变量的条件熵
+
结束{ align } </math >
    
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
 
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
  −
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are independent random variables.
  −
  −
相反,math  Eta (y | x) Eta (y) / math 当且仅当 math y / math 和 math x / math 是独立随机变量。
            +
where <math>\operatorname{I}(X;Y)</math> is the mutual information between <math>X</math> and <math>Y</math>.
    +
其中,“数学”和“数学”之间的相互信息。
    
===Chain rule===
 
===Chain rule===
  −
===Chain rule===
  −
  −
链式规则
      
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy:
 
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy:
   −
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has joint entropy <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the chain rule of conditional entropy:
+
For independent <math>X</math> and <math>Y</math>:
 
  −
假设由两个随机变量数学 x / math 和数学 y / math 组成的组合系统具有联合熵数学 Eta (x,y) / math,也就是说,我们平均需要 math  Eta (x,y) / math 位信息来描述它的精确状态。现在,如果我们首先学习数学 x / math 的值,我们就得到了数学 Eta (x) / 数学信息位。一旦知道了数学 x / math,我们只需要 math  Eta (x,y)- Eta (x) / math 位来描述整个系统的状态。这个量正是 math  Eta (y | x) / math,它给出了条件熵的链式法则:
  −
 
      +
对于独立的《数学》和《数学》 :
      第347行: 第285行:  
:<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}}
 
:<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}}
   −
<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math>
+
<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
  −
Math  Eta (y | x) Eta (x,y)- Eta (x) . / math
  −
 
      +
Eta (y | x) = Eta (y) </math > and < math > Eta (x | y) = Eta (x) ,</math >
      第357行: 第293行:  
The chain rule follows from the above definition of conditional entropy:
 
The chain rule follows from the above definition of conditional entropy:
   −
The chain rule follows from the above definition of conditional entropy:
+
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given random variate <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
  −
链式规则遵循以上条件熵的定义:
  −
 
      +
虽然对于给定的随机变量来说,特定条件熵的 Eta (x | y = y) </math > </math > 可能比 </math > Eta (x) </math > </math > ,< math > Eta (x | y) </math > 不能超过 math > Eta (x) </math > 。
          
:<math>\begin{align}  
 
:<math>\begin{align}  
  −
<math>\begin{align}
  −
  −
数学 begin { align }
      
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
 
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
   −
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
+
&= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
   −
Eta (y | x) & sum (x,y) p (x,y) log 左(frac (x)} p (x,y)右)[4 pt ]
+
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let <math>X</math> and <math>Y</math> be a continuous random variables with a joint probability density function <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as
   −
&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
+
上面的定义适用于离散随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。设 x 是连续随机变量,f (x,y)是连续随机概率密度函数。微分条件熵 < math > h (x | y) </math > 被定义为
    
  &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
 
  &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
  −
数学 x,y 中数学 y } p (x,y) log (p (x,y)) + 数学 x,y 中数学 y } p (x,y) log (p (x))[4 pt ]
      
  & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
 
  & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
   −
& = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
+
{{Equation box 1
   −
& Eta (x,y) + sum { x } p (x) log (p (x))[4 pt ]
+
{方程式方框1
    
  & = \Eta(X,Y) - \Eta(X).  
 
  & = \Eta(X,Y) - \Eta(X).  
   −
& = \Eta(X,Y) - \Eta(X).
+
|indent =
   −
&  Eta (x,y)- Eta (x).
+
2012年10月22日
    
\end{align}</math>
 
\end{align}</math>
   −
\end{align}</math>
+
|title=
   −
End { align } / math
+
2012年10月11日
          +
|equation = }}
    +
| equation = }
    
In general, a chain rule for multiple random variables holds:
 
In general, a chain rule for multiple random variables holds:
   −
In general, a chain rule for multiple random variables holds:
+
|cellpadding= 6
   −
一般来说,多个随机变量的链式规则适用于:
+
6
          +
|border
    +
边界
    
:<math> \Eta(X_1,X_2,\ldots,X_n) =
 
:<math> \Eta(X_1,X_2,\ldots,X_n) =
   −
<math> \Eta(X_1,X_2,\ldots,X_n) =
+
|border colour = #0073CF
   −
Math  Eta (x1,x2, ldots,xn)
+
0073CF
    
  \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}}
 
  \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}}
   −
\sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>
+
|background colour=#F5FFFA}}
 
  −
{ i } ^ n  Eta (xi | x1,ldots,x { i-1}) / math
  −
 
      +
5/fffa }}
      第433行: 第363行:  
It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used.
 
It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used.
   −
It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.
     −
它有一个类似的形式链规则在概率论,除了加法代替乘法是使用。
      +
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
   −
 
+
与离散随机变量的条件熵相反,条件微分熵可能是负的。
 
  −
 
  −
===Bayes' rule===
      
===Bayes' rule===
 
===Bayes' rule===
  −
贝叶斯规则
      
[[Bayes' rule]] for conditional entropy states
 
[[Bayes' rule]] for conditional entropy states
   −
Bayes' rule for conditional entropy states
+
As in the discrete case there is a chain rule for differential entropy:
   −
条件熵的贝叶斯规则
+
在离散情况下,微分熵有一个链式规则:
    
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
   −
<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
+
<math>h(Y|X)\,=\,h(X,Y)-h(X)</math>
   −
Math  Eta (y | x) , Eta (x | y)- Eta (x) +  Eta (y) . / math
+
H (y | x) ,= ,h (x,y)-h (x)
          +
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
    +
然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。
    
''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
  −
Proof. <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
  −
  −
证据。Math  Eta (y | x) Eta (x,y)- Eta (x) / math  Eta (x | y) Eta (y,x)- Eta (y) / math.对称性需要数学 Eta (x,y) Eta (y,x) / 数学。减去这两个方程就得到了贝叶斯定律。
            +
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
    +
联合微分熵也用于连续随机变量之间互信息的定义:
    
If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have:
 
If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have:
   −
If <math>Y</math> is conditionally independent of <math>Z</math> given <math>X</math> we have:
+
<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
 
  −
如果数学 y / 数学是条件独立于数学 z / 数学给定的数学 x / 数学,我们有:
  −
 
      +
(x,y) = h (x)-h (x | y) = h (y)-h (y | x) </math >
      第485行: 第407行:  
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
 
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
   −
<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
+
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.
   −
Math  Eta (y | x,z) , Eta (y | x) . / math
+
当且仅当 < math > x </math > 和 < math > y </math > 是独立的。
      −
  −
  −
  −
===Other properties===
      
===Other properties===
 
===Other properties===
  −
其他物业
      
For any <math>X</math> and <math>Y</math>:
 
For any <math>X</math> and <math>Y</math>:
   −
For any <math>X</math> and <math>Y</math>:
+
The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:
   −
对于任何数学 x / 数学 y / 数学:
+
条件微分熵对估计量的期望平方误差产生一个下限。对于任何一个随机变量,观察值 < math > y </math > 和估计值 < math > widedhat { x } </math > ,下面是:
    
:<math display="block">\begin{align}
 
:<math display="block">\begin{align}
   −
<math display="block">\begin{align}
+
<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
   −
数学显示“ block” begin { align }
+
< math display = " block" > mathbb { e } left [ bigl (x-widehat { x }{(y)} bigr) ^ 2 right ]
    
   \Eta(Y|X) &\le \Eta(Y) \, \\
 
   \Eta(Y|X) &\le \Eta(Y) \, \\
   −
  \Eta(Y|X) &\le \Eta(Y) \, \\
+
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
   −
三、 Eta (y | x)和 le Eta (y) ,
+
1}{2 pi e } e ^ {2 h (x | y)} </math >
    
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
  −
  \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
  −
  −
(x,y) &  Eta (x | y) +  Eta (y | x) +  operatorname { i }(x; y) ,
      
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
 
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
   −
  \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
+
This is related to the uncertainty principle from quantum mechanics.
   −
Eta (x,y) & Eta (x) + Eta (y)-操作者名称{ i }(x; y) , ,
+
这与量子力学的不确定性原理有关。
 
  −
  \operatorname{I}(X;Y) &\le \Eta(X),\,
      
   \operatorname{I}(X;Y) &\le \Eta(X),\,
 
   \operatorname{I}(X;Y) &\le \Eta(X),\,
  −
{ i }(x; y) & le Eta (x) , ,
  −
  −
\end{align}</math>
      
\end{align}</math>
 
\end{align}</math>
  −
End { align } / math
            +
In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.
    +
在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。
    
where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>.
 
where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>.
  −
where <math>\operatorname{I}(X;Y)</math> is the mutual information between <math>X</math> and <math>Y</math>.
  −
  −
其中 math  operatorname { i }(x; y) / math 是 math x / math 和 math y / math 之间的相互信息。
  −
  −
  −
        −
For independent <math>X</math> and <math>Y</math>:
      
For independent <math>X</math> and <math>Y</math>:
 
For independent <math>X</math> and <math>Y</math>:
  −
对于独立数学 x / 数学 y / 数学:
  −
  −
            
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
  −
<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
  −
  −
Math  Eta (y | x) Eta (y) / math  Eta (x | y) Eta (x) ,/ math
  −
  −
        第577行: 第465行:  
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
   −
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given random variate <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
     −
虽然对于给定的随机变量 y / 数学 y / 数学,特定条件熵数学 Eta (x | y) / 数学可以比 math  Eta (x) / 数学更小或更大,math  Eta (x | y) / 数学永远不能超过 math  Eta (x) / 数学。
  −
  −
  −
  −
  −
  −
== Conditional differential entropy ==
      
== Conditional differential entropy ==
 
== Conditional differential entropy ==
  −
条件微分熵
      
=== Definition ===
 
=== Definition ===
  −
=== Definition ===
  −
  −
定义
      
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
  −
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let <math>X</math> and <math>Y</math> be a continuous random variables with a joint probability density function <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as
  −
  −
上述定义适用于离散型随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。让数学 x / math 和数学 y / math 是一个连续的随机变量和一个概率密度函数 / 数学 f (x,y) / math。微分 / 条件熵数学 h (x | y) / math 定义为
  −
  −
            
{{Equation box 1
 
{{Equation box 1
  −
{{Equation box 1
  −
  −
{方程式方框1
  −
  −
|indent =
  −
  −
|indent =
  −
  −
不会有事的
  −
  −
|title=
  −
  −
|title=
  −
  −
标题
  −
  −
|equation = {{NumBlk||<math>h(X|Y) = -\int_{\mathcal X, \mathcal Y} f(x,y)\log f(x|y)\,dx dy</math>|{{EquationRef|Eq.2}}}}
  −
  −
|equation = }}
  −
  −
会公式开始
  −
  −
|cellpadding= 6
  −
  −
|cellpadding= 6
  −
  −
6号手术室
  −
  −
|border
  −
  −
|border
  −
  −
边界
  −
  −
|border colour = #0073CF
  −
  −
|border colour = #0073CF
  −
  −
0073CF
  −
  −
|background colour=#F5FFFA}}
  −
  −
|background colour=#F5FFFA}}
  −
  −
5 / fffa }
  −
  −
  −
  −
  −
  −
=== Properties ===
  −
  −
=== Properties ===
  −
  −
属性
  −
  −
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
  −
  −
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
  −
  −
与离散随机变量的条件熵相反,条件微分熵可能是负的。
  −
  −
  −
  −
  −
  −
As in the discrete case there is a chain rule for differential entropy:
  −
  −
As in the discrete case there is a chain rule for differential entropy:
  −
  −
在离散情况下,微分熵有一个链式规则:
  −
  −
:<math>h(Y|X)\,=\,h(X,Y)-h(X)</math><ref name=cover1991 />{{rp|253}}
  −
  −
<math>h(Y|X)\,=\,h(X,Y)-h(X)</math>
  −
  −
数学 h (y | x) ,h (x,y)-h (x) / math
  −
  −
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
  −
  −
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
  −
  −
然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。
  −
  −
  −
  −
  −
  −
Joint differential entropy is also used in the definition of the [[mutual information]] between continuous random variables:
  −
  −
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
  −
  −
联合微分熵也用于连续随机变量之间互信息的定义:
  −
  −
:<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
  −
  −
<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
  −
  −
{ i }(x,y) h (x)-h (x | y) h (y)-h (y | x) / math
  −
  −
  −
  −
  −
  −
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.<ref name=cover1991 />{{rp|253}}
  −
  −
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.
  −
  −
数学 h (x | y) le h (x) / math with equality 当且仅当数学 x / math 和数学 y / math 是独立的。
  −
  −
  −
  −
  −
  −
===Relation to estimator error===
  −
  −
===Relation to estimator error===
  −
  −
与估计误差的关系
  −
  −
The conditional differential entropy yields a lower bound on the expected squared error of an [[estimator]]. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:<ref name=cover1991 />{{rp|255}}
  −
  −
The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:
  −
  −
条件微分熵对估计量的期望平方误差产生一个下限。对于任何随机变量的数学 x / math,观察数学 y / math 和估计数学 x / math,下面的观点成立:
  −
  −
:<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
  −
  −
<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
  −
  −
数学显示块“左”[ bigl (x-widehat {(y)} bigr) ^ 2]
  −
  −
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
  −
  −
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
  −
  −
(x | y)} / math
  −
  −
  −
  −
  −
  −
This is related to the [[uncertainty principle]] from [[quantum mechanics]].
  −
  −
This is related to the uncertainty principle from quantum mechanics.
  −
  −
这与量子力学的不确定性原理有关。
  −
  −
  −
  −
  −
  −
==Generalization to quantum theory==
  −
  −
==Generalization to quantum theory==
  −
  −
对量子理论的推广
  −
  −
In [[quantum information theory]], the conditional entropy is generalized to the [[conditional quantum entropy]]. The latter can take negative values, unlike its classical counterpart.
  −
  −
In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.
  −
  −
在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。
  −
  −
  −
  −
  −
  −
== See also ==
  −
  −
== See also ==
  −
  −
参见
  −
  −
* [[Entropy (information theory)]]
  −
  −
  −
  −
* [[Mutual information]]
  −
  −
  −
  −
* [[Conditional quantum entropy]]
  −
  −
  −
  −
* [[Variation of information]]
  −
  −
  −
  −
* [[Entropy power inequality]]
  −
  −
  −
  −
* [[Likelihood function]]
  −
  −
  −
  −
  −
  −
  −
  −
==References==
  −
  −
==References==
  −
  −
参考资料
  −
  −
{{Reflist}}
  −
  −
  −
  −
  −
  −
  −
  −
[[Category:Entropy and information]]
      
Category:Entropy and information
 
Category:Entropy and information
第831行: 第481行:  
类别: 熵和信息
 
类别: 熵和信息
   −
[[Category:Information theory]]
+
|indent =
    
Category:Information theory
 
Category:Information theory
1,592

个编辑

导航菜单