Because a Bayesian network is a complete model for its variables and their relationships, it can be used to answer probabilistic queries about them. For example, the network can be used to update knowledge of the state of a subset of variables when other variables (the ''evidence'' variables) are observed. This process of computing the ''posterior'' distribution of variables given evidence is called probabilistic inference. The posterior gives a universal [[sufficient statistic]] for detection applications, when choosing values for the variable subset that minimize some expected loss function, for instance the probability of decision error. A Bayesian network can thus be considered a mechanism for automatically applying [[Bayes' theorem]] to complex problems. | Because a Bayesian network is a complete model for its variables and their relationships, it can be used to answer probabilistic queries about them. For example, the network can be used to update knowledge of the state of a subset of variables when other variables (the ''evidence'' variables) are observed. This process of computing the ''posterior'' distribution of variables given evidence is called probabilistic inference. The posterior gives a universal [[sufficient statistic]] for detection applications, when choosing values for the variable subset that minimize some expected loss function, for instance the probability of decision error. A Bayesian network can thus be considered a mechanism for automatically applying [[Bayes' theorem]] to complex problems. |