Let H(Y ǀ X = x) be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
+
Let H(Y ǀ X = x) be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as H(Y):=E[I(Y), i.e.
设H(Y ǀ X = x)为离散随机变量<math>Y</math>的熵,条件是离散随机变量<math>X</math>取一定值<math>x</math>。
设H(Y ǀ X = x)为离散随机变量<math>Y</math>的熵,条件是离散随机变量<math>X</math>取一定值<math>x</math>。