更改

跳到导航 跳到搜索
删除4字节 、 2020年10月28日 (三) 14:13
第49行: 第49行:  
Let H(Y ǀ X = x) be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as H(Y):=E[I(Y), i.e.
 
Let H(Y ǀ X = x) be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as H(Y):=E[I(Y), i.e.
   −
设H(Y ǀ X = x)为离散随机变量<math>Y</math>的熵,条件是离散随机变量<math>X</math>取一定值<math>x</math>
+
设H(Y ǀ X = x)为离散随机变量<math>Y</math>的熵,条件是离散随机变量<math>X</math>取一定值<math>x</math>。用<math>\mathcal X</math>和<math>\mathcal Y</math>表示<math>X</math>和<math>Y</math>的支撑集。令<math>Y</math>具有概率质量函数<math>p_Y{(y)}</math>。<math>Y</math>的无条件熵计算为H(Y):=E[I(Y)。
 
  −
<math>\mathcal X</math>和<math>\mathcal Y</math>表示<math>X</math>和<math>Y</math>的支撑集。令<math>Y</math>具有概率质量函数<math>p_Y{(y)}</math>。
  −
 
  −
<math>Y</math>的无条件熵计算为H(Y):=E[I(Y)。
       
961

个编辑

导航菜单