更改

跳到导航 跳到搜索
删除3字节 、 2020年10月28日 (三) 14:44
第62行: 第62行:       −
:<math>\Eta(Y|X=x)
+
:<math>H(Y|X=x)
 
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math>
 
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math>
 
Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref>
 
Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref>
961

个编辑

导航菜单