更改

跳到导航 跳到搜索
添加281字节 、 2020年10月28日 (三) 17:54
第214行: 第214行:  
当且仅当X和Y是独立的时,<math>h(X|Y) \le h(X)</math>才相等。
 
当且仅当X和Y是独立的时,<math>h(X|Y) \le h(X)</math>才相等。
   −
===Relation to estimator error===
+
=== Relation to estimator error 与预估误差的关系 ===
 
The conditional differential entropy yields a lower bound on the expected squared error of an [[estimator]]. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:<ref name=cover1991 />{{rp|255}}
 
The conditional differential entropy yields a lower bound on the expected squared error of an [[estimator]]. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:<ref name=cover1991 />{{rp|255}}
 +
 +
条件微分熵在估计量的期望平方误差上有一个下限。对于任何随机变量<math>X</math>,观察值<math>Y</math>和估计量<math>\widehat{X}</math>,以下条件成立:
 +
 +
 
:<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]  
 
:<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]  
 
  \ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
 
  \ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
 +
    
This is related to the [[uncertainty principle]] from [[quantum mechanics]].
 
This is related to the [[uncertainty principle]] from [[quantum mechanics]].
 +
 +
这与来自量子力学的不确定性原理有关。
    
==Generalization to quantum theory==
 
==Generalization to quantum theory==
961

个编辑

导航菜单