更改

跳到导航 跳到搜索
添加4字节 、 2020年11月1日 (日) 00:58
第20行: 第20行:  
度分布无论是在研究真实网络(如互联网和社会网络)中还是在理论网络中都非常重要。以最简单的网络模型([[ER模型]])
 
度分布无论是在研究真实网络(如互联网和社会网络)中还是在理论网络中都非常重要。以最简单的网络模型([[ER模型]])
 
[[随机图 Random graph]]为例,它的每''n''个节点都以概率''p'' (或1 − ''p'')独立连接(或不独立连接) ,其中'''<font color="#ff8000">二项分布 Binomial Distribution</font>'''的度值为''k'':
 
[[随机图 Random graph]]为例,它的每''n''个节点都以概率''p'' (或1 − ''p'')独立连接(或不独立连接) ,其中'''<font color="#ff8000">二项分布 Binomial Distribution</font>'''的度值为''k'':
 +
    
:<math>
 
:<math>
 
P(k) = {n-1\choose k} p^k (1 - p)^{n-1-k},
 
P(k) = {n-1\choose k} p^k (1 - p)^{n-1-k},
 
</math>
 
</math>
 +
    
(即使平均度<math>\langle k\rangle=p(n-1)</math>保持不变,也会出现有限节点的泊松分布)。现实世界中的大多数网络的度分布却往往与上述分布非常不同,它们的大多数节点是高度右倾的,这就意味着这些节点的度值较低,但少数节点,即所谓的“'''枢纽'''” ,度值较高。一些网络,尤其是互联网、万维网和一些社交网络,被认为具有近似遵循[[幂律分布 power law]:
 
(即使平均度<math>\langle k\rangle=p(n-1)</math>保持不变,也会出现有限节点的泊松分布)。现实世界中的大多数网络的度分布却往往与上述分布非常不同,它们的大多数节点是高度右倾的,这就意味着这些节点的度值较低,但少数节点,即所谓的“'''枢纽'''” ,度值较高。一些网络,尤其是互联网、万维网和一些社交网络,被认为具有近似遵循[[幂律分布 power law]:
 +
    
:<math>
 
:<math>
第35行: 第38行:     
<br>
 
<br>
 +
 
== 超额度分布 ==
 
== 超额度分布 ==
  
7,129

个编辑

导航菜单