第70行: |
第70行: |
| |background colour=#F5FFFA}} | | |background colour=#F5FFFA}} |
| | | |
− | ==In terms of pdf's for continuous distributions== | + | == In terms of pdf's for continuous distributions 关于连续分布的概率密度函数 == |
| + | |
| For (absolutely) continuous random variables <math>X</math>, <math>Y</math>, and <math>Z</math> with [[Support (mathematics)|support sets]] <math>\mathcal{X}</math>, <math>\mathcal{Y}</math> and <math>\mathcal{Z}</math>, the conditional mutual information <math>I(X;Y|Z)</math> is as follows | | For (absolutely) continuous random variables <math>X</math>, <math>Y</math>, and <math>Z</math> with [[Support (mathematics)|support sets]] <math>\mathcal{X}</math>, <math>\mathcal{Y}</math> and <math>\mathcal{Z}</math>, the conditional mutual information <math>I(X;Y|Z)</math> is as follows |
| + | 对于具有支持集<math>X</math>, <math>Y</math>, 和 <math>Z</math>的(绝对)连续随机变量<math>\mathcal{X}</math>, <math>\mathcal{Y}</math> 和 <math>\mathcal{Z}</math>,条件交互信息<math>I(X;Y|Z)</math>如下 |
| + | |
| + | |
| :<math> | | :<math> |
| I(X;Y|Z) = \int_{\mathcal{Z}} \bigg( \int_{\mathcal{Y}} \int_{\mathcal{X}} | | I(X;Y|Z) = \int_{\mathcal{Z}} \bigg( \int_{\mathcal{Y}} \int_{\mathcal{X}} |
| \log \left(\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}(x|z)p_{Y|Z}(y|z)}\right) p_{X,Y|Z}(x,y|z) dx dy \bigg) p_Z(z) dz | | \log \left(\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}(x|z)p_{Y|Z}(y|z)}\right) p_{X,Y|Z}(x,y|z) dx dy \bigg) p_Z(z) dz |
| </math> | | </math> |
| + | |
| + | |
| where the marginal, joint, and/or conditional [[probability density function]]s are denoted by <math>p</math> with the appropriate subscript. This can be simplified as | | where the marginal, joint, and/or conditional [[probability density function]]s are denoted by <math>p</math> with the appropriate subscript. This can be simplified as |
| + | |
| + | 其中边缘概率密度函数,联合概率密度函数,和(或)条件概率密度函数可以由p加上适当的下标表示。这可以简化为 |
| + | |
| | | |
| {{Equation box 1 | | {{Equation box 1 |