更改

跳到导航 跳到搜索
添加640字节 、 2020年11月15日 (日) 17:37
无编辑摘要
第129行: 第129行:  
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos.  Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.
 
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos.  Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.
   −
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力的历史”。自调节系统最重要的特性之一是它能“适应混乱的边缘”或避免混乱的能力。实际上来讲,通过朝着混乱的边缘出发但是不走的太远,领导者就可以在避免灾难的情况下自发地行动。Complexity期刊2009年3/4月一期的一篇文章进一步解释了自我调节系统的使用和现实意义。物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。
+
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力的历史”。自调节系统最重要的特性之一是它能“适应混乱的边缘”或避免混乱的能力。实际上来讲,通过朝着混乱的边缘出发但是不走的太远,领导者就可以在避免灾难的情况下自发地行动。Complexity期刊2009年3/4月一期的一篇文章进一步解释了自我调节系统的使用和现实意义。<ref>Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref>物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>
      第145行: 第145行:  
How do various types of adaptations interact in a living system? Practopoiesis, a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which autopoiesis of the entire organism or a cell occurs through a hierarchy of allopoietic interactions among components. This is possible because the components are organized into a poietic hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
 
How do various types of adaptations interact in a living system? Practopoiesis, a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which autopoiesis of the entire organism or a cell occurs through a hierarchy of allopoietic interactions among components. This is possible because the components are organized into a poietic hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
   −
在一个生命系统中,各种类型的适应性是如何相互作用的?<font color="#ff8000"> 拓扑实践Practopoiesis</font>,这个术语源于它的发明者 Danko nikoli,指向了能回答这个问题的一个适应机制层次结构。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分之间的异体生成相互作用而发生的。这之所以可能是因为组件被组织成一个极端层次结构: 一个组件的自适应操作导致另一个组件的创建。该理论提出,生命系统展示了一个由四个这样的适应性极化操作组成的层级结构:
+
在一个生命系统中,各种类型的适应性是如何相互作用的?<font color="#ff8000"> 拓扑实践Practopoiesis</font>,这个术语源于它的发明者 Danko nikoli,指向了能回答这个问题的一个适应机制层次结构。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref>之间的异体生成相互作用而发生的。这之所以可能是因为组件被组织成一个极端层次结构: 一个组件的自适应操作导致另一个组件的创建。该理论提出,生命系统展示了一个由四个这样的适应性极化操作组成的层级结构:
     
12

个编辑

导航菜单