更改

跳到导航 跳到搜索
添加54字节 、 2020年11月25日 (三) 16:58
无编辑摘要
第39行: 第39行:     
The algebraic curve defined by <math>\{(x,y):y^3-x^2=0\}</math> in the <math>(x, y)</math> coordinate system has a singularity (called a cusp) at <math>(0, 0)</math>. For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory.
 
The algebraic curve defined by <math>\{(x,y):y^3-x^2=0\}</math> in the <math>(x, y)</math> coordinate system has a singularity (called a cusp) at <math>(0, 0)</math>. For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory.
在(x,y)坐标系中{(x,y):y3−x2=0}定义的代数曲线在(0,0)处有一个<font color="#ff8000">奇点</font>(称为尖点)。代数<font color="#ff8000">奇点</font>的多样性,参见代数几何中的奇异点。关于微分几何中的<font color="#ff8000">奇点</font>,见奇点理论
+
在(x,y)坐标系中由{(x,y):y3−x2=0}定义的代数曲线在(0,0)处有一个<font color=#ff8000”>奇点</font>(称为尖点)。关于代数几何中的<font color=#ff8000”>奇点</font>,参见代数簇中的奇异点。关于微分几何中的<font color=#ff8000”>奇点</font>,参见<font color=“#ff8000”>奇点</font>理论
     
29

个编辑

导航菜单