更改

跳到导航 跳到搜索
无编辑摘要
第22行: 第22行:  
当温度趋于'''<font color="#ff8000"> 绝对零度 absolute zero</font>'''时,系统的熵趋于一个定值。除非晶固体(玻璃)外,系统在绝对零度时的熵通常接近于零。
 
当温度趋于'''<font color="#ff8000"> 绝对零度 absolute zero</font>'''时,系统的熵趋于一个定值。除非晶固体(玻璃)外,系统在绝对零度时的熵通常接近于零。
   −
有人提出了其他的定律,但没有一个达到公认的四个定律的普遍性,也没有在标准教科书中被讨论。<ref name="Guggenheim 1985">Guggenheim, E.A. (1985). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', seventh edition, North Holland, Amsterdam, {{ISBN|0-444-86951-4}}.</ref><ref name="Kittel and Kroemer 1980">Kittel, C. Kroemer, H. (1980). ''Thermal Physics'', second edition, W.H. Freeman, San Francisco, {{ISBN|0-7167-1088-9}}.</ref><ref name="Adkins 1968">Adkins, C.J. (1968). ''Equilibrium Thermodynamics'', McGraw-Hill, London, {{ISBN|0-07-084057-1}}.</ref><ref name="LJCV 2008">Lebon, G., Jou, D., Casas-Vázquez, J. (2008). ''Understanding Non-equilibrium Thermodynamics. Foundations, Applications, Frontiers'', Springer, Berlin, {{ISBN|978-3-540-74252-4}}.</ref><ref>{{cite book |author1=Chris Vuille |author2=Serway, Raymond A. |author3=Faughn, Jerry S. |title=College physics |publisher=Brooks/Cole, Cengage Learning |location=Belmont, CA |year=2009 |isbn=978-0-495-38693-3 |oclc= |doi= |accessdate= | page =  355 |url=https://books.google.com/books?id=CX0u0mIOZ44C&pg=PT355}}</ref>
+
有人提出了其他的定律,但没有一个达到公认的四个定律的普遍性,也没有在标准教科书中被讨论。<ref name="Guggenheim 1985">Guggenheim, E.A. (1985). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', seventh edition, North Holland, Amsterdam.</ref><ref name="Kittel and Kroemer 1980">Kittel, C. Kroemer, H. (1980). ''Thermal Physics'', second edition, W.H. Freeman, San Francisco.</ref><ref name="Adkins 1968">Adkins, C.J. (1968). ''Equilibrium Thermodynamics'', McGraw-Hill, London.</ref><ref name="LJCV 2008">Lebon, G., Jou, D., Casas-Vázquez, J. (2008). ''Understanding Non-equilibrium Thermodynamics. Foundations, Applications, Frontiers'', Springer, Berlin, .</ref><ref>{{cite book |author1=Chris Vuille |author2=Serway, Raymond A. |author3=Faughn, Jerry S. |title=College physics |publisher=Brooks/Cole, Cengage Learning |location=Belmont, CA |year=2009 |isbn=978-0-495-38693-3 |oclc= |doi= |accessdate= | page =  355 |url=https://books.google.com/books?id=CX0u0mIOZ44C&pg=PT355}}</ref>
    
==热力学零定律 Zeroth law ==
 
==热力学零定律 Zeroth law ==
第34行: 第34行:  
该定律旨在允许一个经验参数存在,即温度,作为热力学系统的一种性质,即相互处于热平衡的系统具有相同的温度。这里所述的定律适用于特定的物质(例如一定量的气体物质)来匹配其他物质的温度,但不能证明温度是一个可以用实数来衡量的量。
 
该定律旨在允许一个经验参数存在,即温度,作为热力学系统的一种性质,即相互处于热平衡的系统具有相同的温度。这里所述的定律适用于特定的物质(例如一定量的气体物质)来匹配其他物质的温度,但不能证明温度是一个可以用实数来衡量的量。
   −
虽然这个版本的定律是最常见的陈述版本之一,但它只是被称为“第零定律”的众多陈述之一。有些陈述更进一步,提供了一个重要的物理事实,即温度是一维的,并且从概念上把物体按实数顺序由冷到热排列。<ref>Sommerfeld, A. (1951/1955). ''Thermodynamics and Statistical Mechanics'', vol. 5 of ''Lectures on Theoretical Physics'', edited by F. Bopp, J. Meixner, translated by J. Kestin, Academic Press, New York, p. 1.</ref><ref>[[James Serrin|Serrin, J.]] (1978). The concepts of thermodynamics, in ''Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August 1977'', edited by G.M. de La Penha, L.A.J. Medeiros, North-Holland, Amsterdam, {{ISBN|0-444-85166-6}}, pp. 411–51.</ref><ref>[[James Serrin|Serrin, J.]] (1986). Chapter 1, 'An Outline of Thermodynamical Structure', pp. 3–32, in ''New Perspectives in Thermodynamics'', edited by J. Serrin, Springer, Berlin, {{ISBN|3-540-15931-2}}.</ref>也许对于“第零定律”并没有唯一的“最佳的表述”,因为在文献中有一系列的热力学原理的表述,每一种都要求对热力学定律作出各自适当的说明。
+
虽然这个版本的定律是最常见的陈述版本之一,但它只是被称为“第零定律”的众多陈述之一。有些陈述更进一步,提供了一个重要的物理事实,即温度是一维的,并且从概念上把物体按实数顺序由冷到热排列。<ref>Sommerfeld, A. (1951/1955). ''Thermodynamics and Statistical Mechanics'', vol. 5 of ''Lectures on Theoretical Physics'', edited by F. Bopp, J. Meixner, translated by J. Kestin, Academic Press, New York, p. 1.</ref><ref>[[James Serrin|Serrin, J.]] (1978). The concepts of thermodynamics, in ''Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August 1977'', edited by G.M. de La Penha, L.A.J. Medeiros, North-Holland, Amsterdam, pp. 411–51.</ref><ref>[[James Serrin|Serrin, J.]] (1986). Chapter 1, 'An Outline of Thermodynamical Structure', pp. 3–32, in ''New Perspectives in Thermodynamics'', edited by J. Serrin, Springer, Berlin.</ref>也许对于“第零定律”并没有唯一的“最佳的表述”,因为在文献中有一系列的热力学原理的表述,每一种都要求对热力学定律作出各自适当的说明。
   −
虽然这些关于温度和热平衡的概念是热力学的基础,并在19世纪得到了清楚的阐述,但是直到20世纪30年代福勒和古根海姆这样做的时候,人们才普遍感觉到需要对上述定律进行明确编号,而这时第一定律、第二定律和第三定律已经得到广泛的理解和认可。因此,它被称为第零定律。该定律作为早期定律基础的重要性在于,它允许以非循环的方式定义温度,而无需参考熵及其共轭变量。这样的温度定义被称为“经验主义的”。<ref>Adkins, C.J. (1968/1983). ''Equilibrium Thermodynamics'', (first edition 1968), third edition 1983, Cambridge University Press, {{ISBN|0-521-25445-0}}, pp. 18–20.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics Press, New York, {{ISBN|0-88318-797-3}}, p. 26.</ref><ref>Buchdahl, H.A. (1966), ''The Concepts of Classical Thermodynamics'', Cambridge University Press, London, pp. 30, 34ff, 46f, 83.</ref><ref>*Münster, A. (1970), ''Classical Thermodynamics'', translated by E.S. Halberstadt, Wiley–Interscience, London, {{ISBN|0-471-62430-6}}, p. 22.</ref><ref>[[Brian Pippard|Pippard, A.B.]] (1957/1966). ''Elements of Classical Thermodynamics for Advanced Students of Physics'', original publication 1957, reprint 1966, Cambridge University Press, Cambridge, p. 10.</ref><ref>[[Harold A. Wilson (physicist)|Wilson, H.A.]] (1966). ''Thermodynamics and Statistical Mechanics'', Cambridge University Press, London, pp. 4, 8, 68, 86, 97, 311.</ref>
+
虽然这些关于温度和热平衡的概念是热力学的基础,并在19世纪得到了清楚的阐述,但是直到20世纪30年代福勒和古根海姆这样做的时候,人们才普遍感觉到需要对上述定律进行明确编号,而这时第一定律、第二定律和第三定律已经得到广泛的理解和认可。因此,它被称为第零定律。该定律作为早期定律基础的重要性在于,它允许以非循环的方式定义温度,而无需参考熵及其共轭变量。这样的温度定义被称为“经验主义的”。<ref>Adkins, C.J. (1968/1983). ''Equilibrium Thermodynamics'', (first edition 1968), third edition 1983, Cambridge University Press, pp. 18–20.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics Press, New York, p. 26.</ref><ref>Buchdahl, H.A. (1966), ''The Concepts of Classical Thermodynamics'', Cambridge University Press, London, pp. 30, 34ff, 46f, 83.</ref><ref>*Münster, A. (1970), ''Classical Thermodynamics'', translated by E.S. Halberstadt, Wiley–Interscience, London, p. 22.</ref><ref>[[Brian Pippard|Pippard, A.B.]] (1957/1966). ''Elements of Classical Thermodynamics for Advanced Students of Physics'', original publication 1957, reprint 1966, Cambridge University Press, Cambridge, p. 10.</ref><ref>[[Harold A. Wilson (physicist)|Wilson, H.A.]] (1966). ''Thermodynamics and Statistical Mechanics'', Cambridge University Press, London, pp. 4, 8, 68, 86, 97, 311.</ref>
    
==第一定律 First law==
 
==第一定律 First law==
第148行: 第148行:  
:<math>\delta Q = T\,dS\, .</math><ref name="Guggenheim 1985"/>
 
:<math>\delta Q = T\,dS\, .</math><ref name="Guggenheim 1985"/>
   −
当只知道宏观状态时,熵也可以被看作是对系统运动和构型的微观细节有关的物理度量。这种细节通常在微观或分子尺度上被称为无序。该定律声称,对于一个系统的两个给定的宏观指定状态,它们之间存在一个被称为熵差的量。'''<font color="#32CD32">这种熵的差异定义了需要多少额外的微观物理信息来指定一个宏观指定状态,给定另一个宏观指定状态-通常是一个方便选择的参考状态,这可能是假定存在的,而不是明确陈述的。自然过程的最终条件始终包含着微观上特定的影响,而这些影响,从过程初始条件的宏观规定来看是无法被完全准确预测的。这就是为什么熵在自然过程中会增加——熵的增加告诉我们需要多少额外的微观信息来区分最终的宏观指定状态和最初的宏观指定状态。</font>'''<ref>Ben-Naim, A. (2008). ''A Farewell to Entropy: Statistical Thermodynamics Based on Information'', World Scientific, New Jersey, {{ISBN|978-981-270-706-2}}.</ref>
+
当只知道宏观状态时,熵也可以被看作是对系统运动和构型的微观细节有关的物理度量。这种细节通常在微观或分子尺度上被称为无序。该定律声称,对于一个系统的两个给定的宏观指定状态,它们之间存在一个被称为熵差的量。'''<font color="#32CD32">这种熵的差异定义了需要多少额外的微观物理信息来指定一个宏观指定状态,给定另一个宏观指定状态-通常是一个方便选择的参考状态,这可能是假定存在的,而不是明确陈述的。自然过程的最终条件始终包含着微观上特定的影响,而这些影响,从过程初始条件的宏观规定来看是无法被完全准确预测的。这就是为什么熵在自然过程中会增加——熵的增加告诉我们需要多少额外的微观信息来区分最终的宏观指定状态和最初的宏观指定状态。</font>'''<ref>Ben-Naim, A. (2008). ''A Farewell to Entropy: Statistical Thermodynamics Based on Information'', World Scientific, New Jersey.</ref>
    
'''<font color="#32CD32"> This information entropy difference defines how much additional microscopic physical information is needed to specify one of the macroscopically specified states, given the macroscopic specification of the other – often a conveniently chosen reference state which may be presupposed to exist rather than explicitly stated. A final condition of a natural process always contains microscopically specifiable effects which are not fully and exactly predictable from the macroscopic specification of the initial condition of the process. This is why entropy increases in natural processes – the increase tells how much extra microscopic information is needed to distinguish the final macroscopically specified state from the initial macroscopically specified state.</font>'''
 
'''<font color="#32CD32"> This information entropy difference defines how much additional microscopic physical information is needed to specify one of the macroscopically specified states, given the macroscopic specification of the other – often a conveniently chosen reference state which may be presupposed to exist rather than explicitly stated. A final condition of a natural process always contains microscopically specifiable effects which are not fully and exactly predictable from the macroscopic specification of the initial condition of the process. This is why entropy increases in natural processes – the increase tells how much extra microscopic information is needed to distinguish the final macroscopically specified state from the initial macroscopically specified state.</font>'''
42

个编辑

导航菜单