第22行: |
第22行: |
| :<math> f(x)=\frac{1}{x} </math> | | :<math> f(x)=\frac{1}{x} </math> |
| | | |
− | <math> f(x)=\frac{1}{x} </math> | + | <math> f(x)=\frac{1}{x} </math> |
| | | |
| = frac {1}{ x } </math > | | = frac {1}{ x } </math > |
第49行: |
第49行: |
| In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type I, which has two subtypes, and type II, which can also be divided into two subtypes (though usually is not). | | In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type I, which has two subtypes, and type II, which can also be divided into two subtypes (though usually is not). |
| | | |
− | 在实际分析中,<font color=“#ff8000”>奇点</font>要么是不连续的,要么是导数的不连续(有时也是高阶导数的不连续)。有四种不连续:类型一,有两种子类型;类型二,也可分为两种子类型(尽管通常不是)。 | + | 在实际分析中,<font color="#ff8000">奇点</font>要么是不连续的,要么是导数的不连续(有时也是高阶导数的不连续)。有四种不连续:类型一,有两种子类型;类型二,也可分为两种子类型(尽管通常不是)。 |
| | | |
| | | |
第97行: |
第97行: |
| does not tend towards anything as <math>x</math> approaches <math>c = 0</math>. The limits in this case are not infinite, but rather undefined: there is no value that <math>g(x)</math> settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity. | | does not tend towards anything as <math>x</math> approaches <math>c = 0</math>. The limits in this case are not infinite, but rather undefined: there is no value that <math>g(x)</math> settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity. |
| | | |
− | 在x趋于<math>c = 0</math>时不趋向任何值。在这种情况下,极限不是无限的,而是没有定义的:g(x)m没有确定的值。借用复分析,这有时被称为<font color=“#ff8000”>本质奇点(本性奇点) essential singularity </font>。 | + | 在x趋于<math>c = 0</math>时不趋向任何值。在这种情况下,极限不是无限的,而是没有定义的:g(x)m没有确定的值。借用复分析,这有时被称为<font color="#ff8000">本质奇点(本性奇点) essential singularity</font>。 |
| | | |
| | | |
第146行: |
第146行: |
| 无限不连续是当左极限或右极限不存在时的特例,特别是因为它是无限的,而另一个极限要么是无限的,要么是某种定义良好的有限数。换句话说,当函数的图形有一个[[垂直渐近线]]时,函数具有无限的不连续性。 | | 无限不连续是当左极限或右极限不存在时的特例,特别是因为它是无限的,而另一个极限要么是无限的,要么是某种定义良好的有限数。换句话说,当函数的图形有一个[[垂直渐近线]]时,函数具有无限的不连续性。 |
| ** An '''essential singularity''' is a term borrowed from complex analysis (see below). This is the case when either one or the other limits <math>f(c^-)</math> or <math>f(c^+)</math> does not exist, but not because it is an ''infinite discontinuity''. ''Essential singularities'' approach no limit, not even if valid answers are extended to include <math>\pm\infty</math>. | | ** An '''essential singularity''' is a term borrowed from complex analysis (see below). This is the case when either one or the other limits <math>f(c^-)</math> or <math>f(c^+)</math> does not exist, but not because it is an ''infinite discontinuity''. ''Essential singularities'' approach no limit, not even if valid answers are extended to include <math>\pm\infty</math>. |
− | “<font color=“#ff8000”>本质奇点</font>”是从复分析中借用的一个术语(见下文)。当极限f(c−)或f(c+)两者中的任意一者不存在时,情况就会如此,但不是因为它是一个“无限不连续性”。<font color=“#ff8000”>本质奇点</font>“接近无限制,即使有效解扩展到包括<math>\pm\infty</math>。 | + | “ <font color="#ff8000">本质奇点(本性奇点)</font>”是从复分析中借用的一个术语(见下文)。当极限f(c−)或f(c+)两者中的任意一者不存在时,情况就会如此,但不是因为它是一个“无限不连续性”。<font color="#ff8000">”本质奇点(本性奇点)“</font>接近无限制,即使有效解扩展到包括<math>\pm\infty</math>。 |
| | | |
| | | |
第153行: |
第153行: |
| In real analysis, a singularity or discontinuity is a property of a function alone. Any singularities that may exist in the derivative of a function are considered as belonging to the derivative, not to the original function. | | In real analysis, a singularity or discontinuity is a property of a function alone. Any singularities that may exist in the derivative of a function are considered as belonging to the derivative, not to the original function. |
| | | |
− | 在实际分析中,奇点或不连续是函数本身的一个性质。任何可能存在于函数导数中的奇点都被认为是属于导数,而不是原函数。
| + | 在实际分析中,<font color="#ff8000">奇点</font>或不连续是函数本身的一个性质。任何可能存在于函数导数中的<font color="#ff8000">奇点</font>都被认为是属于导数,而不是原函数。 |
| | | |
| | | |
第174行: |
第174行: |
| In complex analysis, there are several classes of singularities. These include the isolated singularities, the nonisolated singularities and the branch points. | | In complex analysis, there are several classes of singularities. These include the isolated singularities, the nonisolated singularities and the branch points. |
| | | |
− | 在复分析中,有几类奇点。其中包括孤立奇点、非孤立奇点和分支点。
| + | 在复分析中,有几类<font color="#ff8000">奇点</font>。其中包括孤立奇点、非孤立奇点和分支点。 |
| | | |
| | | |
第189行: |
第189行: |
| 如果存在一个定义在所有U上的全纯函数g,使得对于U \ {a}中的所有z, f(z) = g(z),那么点a是f的一个可去奇点。函数g是函数f的连续替换。<ref>{{Cite web|url=http://mathworld.wolfram.com/Singularity.html|title=Singularity|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-12}}</ref> | | 如果存在一个定义在所有U上的全纯函数g,使得对于U \ {a}中的所有z, f(z) = g(z),那么点a是f的一个可去奇点。函数g是函数f的连续替换。<ref>{{Cite web|url=http://mathworld.wolfram.com/Singularity.html|title=Singularity|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-12}}</ref> |
| * The point ''a'' is a [[pole (complex analysis)|pole]] or non-essential singularity of ''f'' if there exists a holomorphic function ''g'' defined on ''U'' with ''g''(''a'') nonzero, and a [[natural number]] ''n'' such that ''f''(''z'') = ''g''(''z'') / (''z'' − ''a'')<sup>''n''</sup> for all ''z'' in ''U'' \ {''a''}. The least such number ''n'' is called the ''order of the pole''. The derivative at a non-essential singularity itself has a non-essential singularity, with ''n'' increased by 1 (except if ''n'' is 0 so that the singularity is removable). | | * The point ''a'' is a [[pole (complex analysis)|pole]] or non-essential singularity of ''f'' if there exists a holomorphic function ''g'' defined on ''U'' with ''g''(''a'') nonzero, and a [[natural number]] ''n'' such that ''f''(''z'') = ''g''(''z'') / (''z'' − ''a'')<sup>''n''</sup> for all ''z'' in ''U'' \ {''a''}. The least such number ''n'' is called the ''order of the pole''. The derivative at a non-essential singularity itself has a non-essential singularity, with ''n'' increased by 1 (except if ''n'' is 0 so that the singularity is removable). |
− | 如果存在定义在“U”上的全纯函数“g”,且“g”(“a”)非零,且存在一个自然数“n”,使得对所有“z”属于“U”\{“a”},“f”(“z”)=“g”(“z”)/ (“z” – “a”)n,则点“a”为[[极点(复分析)|极]]或“f”的<font color=“#ff8000”>非本质奇点 non-essential singularity</font>。最小的这个数“n”称为“极序”。 <font color=“#ff8000”>非本质奇点</font>处的导数本身也有一个<font color=“#ff8000”>非本质奇点</font>,当“n”增加1时(除非“n”为0,因此<font color=“#ff8000”>奇点</font>可移除) | + | 如果存在定义在“U”上的全纯函数“g”,且“g”(“a”)非零,且存在一个自然数“n”,使得对所有“z”属于“U”\{“a”},“f”(“z”)=“g”(“z”)/ (“z” – “a”)n,则点“a”为[[极点(复分析)|极]]或“f”的<font color=“#ff8000”>非本质奇点 non-essential singularity</font>。最小的这个数“n”称为“极序”。 <font color=“#ff8000”>非本质奇点</font>处的导数本身也有一个<font color=“#ff8000”>非本质奇点</font>,当“n”增加1时(除非“n”为0,因此<font color="#ff8000">奇点</font>可移除)。 |
| * The point ''a'' is an [[essential singularity]] of ''f'' if it is neither a removable singularity nor a pole. The point ''a'' is an essential singularity [[iff|if and only if]] the [[Laurent series]] has infinitely many powers of negative degree.<ref name=":1" /> | | * The point ''a'' is an [[essential singularity]] of ''f'' if it is neither a removable singularity nor a pole. The point ''a'' is an essential singularity [[iff|if and only if]] the [[Laurent series]] has infinitely many powers of negative degree.<ref name=":1" /> |
| 如果点“a”既不是可去奇点,也不是极点,则它是“f”的 <font color=“#ff8000”>非本质奇点</font>。点“a”是 <font color=“#ff8000”>非本质奇点</font>[[iff |当且仅当][[Laurent级数]]具有无穷多个负次幂。 | | 如果点“a”既不是可去奇点,也不是极点,则它是“f”的 <font color=“#ff8000”>非本质奇点</font>。点“a”是 <font color=“#ff8000”>非本质奇点</font>[[iff |当且仅当][[Laurent级数]]具有无穷多个负次幂。 |