更改

跳到导航 跳到搜索
删除51字节 、 2020年11月29日 (日) 22:51
第36行: 第36行:  
We consider a two-dimensional dynamical system of the form
 
We consider a two-dimensional dynamical system of the form
   −
我们考虑一个形式的二维动力系统
+
我们考虑一个二维动力系统的形式
    
:<math>x'(t)=V(x(t))</math>
 
:<math>x'(t)=V(x(t))</math>
   −
<math>x'(t)=V(x(t))</math>
+
:<math>x'(t)=V(x(t))</math>
   −
X’(t) = v (x (t)) </math >
      
where
 
where
第52行: 第51行:  
:<math>V:\mathbb{R}^2\to\mathbb{R}^2</math>
 
:<math>V:\mathbb{R}^2\to\mathbb{R}^2</math>
   −
<math>V:\mathbb{R}^2\to\mathbb{R}^2</math>
+
<math>V:\mathbb{R}^2\to\mathbb{R}^2</math>
   −
2 to mathbb{r}^2</math>
      
is a smooth function. A ''trajectory'' of this system is some smooth function <math>x(t)</math> with values in <math>\mathbb{R}^2</math> which satisfies this differential equation. Such a trajectory is called ''closed'' (or ''periodic'') if it is not constant but returns to its starting point, i.e. if there exists some <math>t_0>0</math> such that <math>x(t+t_0)=x(t)</math> for all <math>t\in\mathbb{R}</math>. An [[orbit (dynamics)|orbit]] is the [[image (mathematics)|image]] of a trajectory, a subset of <math>\mathbb{R}^2</math>. A ''closed orbit'', or ''cycle'', is the image of a closed trajectory. A ''limit cycle'' is a cycle which is the [[limit set]] of some other trajectory.
 
is a smooth function. A ''trajectory'' of this system is some smooth function <math>x(t)</math> with values in <math>\mathbb{R}^2</math> which satisfies this differential equation. Such a trajectory is called ''closed'' (or ''periodic'') if it is not constant but returns to its starting point, i.e. if there exists some <math>t_0>0</math> such that <math>x(t+t_0)=x(t)</math> for all <math>t\in\mathbb{R}</math>. An [[orbit (dynamics)|orbit]] is the [[image (mathematics)|image]] of a trajectory, a subset of <math>\mathbb{R}^2</math>. A ''closed orbit'', or ''cycle'', is the image of a closed trajectory. A ''limit cycle'' is a cycle which is the [[limit set]] of some other trajectory.
51

个编辑

导航菜单