is a smooth function. A ''trajectory'' of this system is some smooth function <math>x(t)</math> with values in <math>\mathbb{R}^2</math> which satisfies this differential equation. Such a trajectory is called ''closed'' (or ''periodic'') if it is not constant but returns to its starting point, i.e. if there exists some <math>t_0>0</math> such that <math>x(t+t_0)=x(t)</math> for all <math>t\in\mathbb{R}</math>. An [[orbit (dynamics)|orbit]] is the [[image (mathematics)|image]] of a trajectory, a subset of <math>\mathbb{R}^2</math>. A ''closed orbit'', or ''cycle'', is the image of a closed trajectory. A ''limit cycle'' is a cycle which is the [[limit set]] of some other trajectory. | is a smooth function. A ''trajectory'' of this system is some smooth function <math>x(t)</math> with values in <math>\mathbb{R}^2</math> which satisfies this differential equation. Such a trajectory is called ''closed'' (or ''periodic'') if it is not constant but returns to its starting point, i.e. if there exists some <math>t_0>0</math> such that <math>x(t+t_0)=x(t)</math> for all <math>t\in\mathbb{R}</math>. An [[orbit (dynamics)|orbit]] is the [[image (mathematics)|image]] of a trajectory, a subset of <math>\mathbb{R}^2</math>. A ''closed orbit'', or ''cycle'', is the image of a closed trajectory. A ''limit cycle'' is a cycle which is the [[limit set]] of some other trajectory. |