第527行: |
第527行: |
| It may be admitted that on repeated measurement of those conjugate intensive functions of state, they are found to have slightly different values from time to time. Such variability is regarded as due to internal fluctuations. The different measured values average to their nominal values. | | It may be admitted that on repeated measurement of those conjugate intensive functions of state, they are found to have slightly different values from time to time. Such variability is regarded as due to internal fluctuations. The different measured values average to their nominal values. |
| | | |
− | 可以承认,在重复测量这些共轭密集态函数时,发现它们的值随时间略有不同。这种可变性被认为是由于内部波动。不同测量值与其名义值的平均值。
| + | 可以承认,在重复测量这些共轭密集态函数时,发现它们的值随时间略有不同。这种可变性被认为是由于内部波动。不同测量值平均到其名义值。 |
| | | |
| When a body of material starts from a non-equilibrium state of inhomogeneity or chemical non-equilibrium, and is then isolated, it spontaneously evolves towards its own internal state of thermodynamic equilibrium. It is not necessary that all aspects of internal thermodynamic equilibrium be reached simultaneously; some can be established before others. For example, in many cases of such evolution, internal mechanical equilibrium is established much more rapidly than the other aspects of the eventual thermodynamic equilibrium.<ref name="Fitts 43">Fitts, D.D. (1962), p. 43.</ref> Another example is that, in many cases of such evolution, thermal equilibrium is reached much more rapidly than chemical equilibrium.<ref>Denbigh, K.G. (1951), p. 42.</ref> | | When a body of material starts from a non-equilibrium state of inhomogeneity or chemical non-equilibrium, and is then isolated, it spontaneously evolves towards its own internal state of thermodynamic equilibrium. It is not necessary that all aspects of internal thermodynamic equilibrium be reached simultaneously; some can be established before others. For example, in many cases of such evolution, internal mechanical equilibrium is established much more rapidly than the other aspects of the eventual thermodynamic equilibrium.<ref name="Fitts 43">Fitts, D.D. (1962), p. 43.</ref> Another example is that, in many cases of such evolution, thermal equilibrium is reached much more rapidly than chemical equilibrium.<ref>Denbigh, K.G. (1951), p. 42.</ref> |
| | | |
− | 当一个物质体从不均匀的非平衡状态或化学非平衡状态开始,然后被孤立,它自发地朝着自己的内部热力学平衡状态演化。没有必要同时达到内部热力学平衡的所有方面; 有些方面可以先于其他方面建立起来。例如,在这种演变的许多情况下,内部力学平衡的建立比最终热力学平衡的其他方面要快得多。另一个例子是,在这种演变的许多情况下,热平衡的发展要比化学平衡快得多
| + | 当一个物质体从不均匀的非平衡状态或化学非平衡状态开始,然后被孤立,它自发地演化到自己的内部热力学平衡状态。没有必要同时达到内部热力学平衡的所有方面; 有些方面可以先于其他方面建立起来。例如,在这种演变的许多情况下,内部机械平衡的建立比最终热力学平衡的其他方面要快得多。另一个例子是,在这种演变的许多情况下,热平衡的发展要比化学平衡快得多。 |
| | | |
| If the system is truly macroscopic as postulated by classical thermodynamics, then the fluctuations are too small to detect macroscopically. This is called the thermodynamic limit. In effect, the molecular nature of matter and the quantal nature of momentum transfer have vanished from sight, too small to see. According to Buchdahl: "... there is no place within the strictly phenomenological theory for the idea of fluctuations about equilibrium (see, however, Section 76)." | | If the system is truly macroscopic as postulated by classical thermodynamics, then the fluctuations are too small to detect macroscopically. This is called the thermodynamic limit. In effect, the molecular nature of matter and the quantal nature of momentum transfer have vanished from sight, too small to see. According to Buchdahl: "... there is no place within the strictly phenomenological theory for the idea of fluctuations about equilibrium (see, however, Section 76)." |
| | | |
− | 如果这个系统真的像经典热力学所假定的那样是宏观的,那么这个系统的涨落太小了,宏观上无法检测到。这就是所谓的热力学极限。实际上,物质的分子性质和动量转移的量子性质已经从我们的视线中消失,因为它们太小而看不见。根据布赫达尔: “ ... 在严格的现象学理论中,平衡的涨落概念是没有位置的
| + | 如果这个系统真的像经典热力学所假定的那样是宏观的,那么这个系统的波动太小了,宏观上无法检测到。这就是所谓的热力学极限。实际上,物质的分子性质和动量转移的量子性质由于它们太小而看不见,已经从我们的视线中消失。根据Buchdahl: “ ... 在严格的现象学理论中,平衡的波动概念是没有位置的。” |
| | | |
| ===Fluctuations within an isolated system in its own internal thermodynamic equilibrium=== | | ===Fluctuations within an isolated system in its own internal thermodynamic equilibrium=== |