第6行: |
第6行: |
| In [[graph theory]] and [[network theory|network analysis]], indicators of '''centrality''' identify the most important [[vertex (graph theory)|vertices]] within a graph. Applications include identifying the most influential person(s) in a [[social network]], key infrastructure nodes in the [[Internet]] or [[urban network]]s, and [[super-spreader]]s of disease. Centrality concepts were first developed in [[social network analysis]], and many of the terms used to measure centrality reflect their [[sociology|sociological]] origin.<ref name="NewmanNetworks">Newman, M.E.J. 2010. ''Networks: An Introduction.'' Oxford, UK: Oxford University Press.</ref> | | In [[graph theory]] and [[network theory|network analysis]], indicators of '''centrality''' identify the most important [[vertex (graph theory)|vertices]] within a graph. Applications include identifying the most influential person(s) in a [[social network]], key infrastructure nodes in the [[Internet]] or [[urban network]]s, and [[super-spreader]]s of disease. Centrality concepts were first developed in [[social network analysis]], and many of the terms used to measure centrality reflect their [[sociology|sociological]] origin.<ref name="NewmanNetworks">Newman, M.E.J. 2010. ''Networks: An Introduction.'' Oxford, UK: Oxford University Press.</ref> |
| In graph theory and network analysis, indicators of centrality identify the most important vertices within a graph. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, and super-spreaders of disease. Centrality concepts were first developed in , and many of the terms used to measure centrality reflect their sociological origin. | | In graph theory and network analysis, indicators of centrality identify the most important vertices within a graph. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, and super-spreaders of disease. Centrality concepts were first developed in , and many of the terms used to measure centrality reflect their sociological origin. |
− |
| |
− | 在'''<font color="#ff8000">图论 graph theory </font>'''和'''<font color="#ff8000">网络分析 network analysis </font>'''中,'''<font color="#ff8000">中心性 centrality </font>'''指标用于识别图中最重要的顶点。其应用包括在社会网络中识别出最有影响力的个人,在因特网或城市网络中识别出最为关键的基础设施节点,以及识别疾病的超级传播者。中心性的概念最初由'''<font color="#ff8000">社会网络分析 social network analysis</font>'''所发展,因此许多用于衡量中心性的术语都反映出了它们的社会学出身。
| |
| | | |
| They should not be confused with [[node influence metric]]s, which seek to quantify the influence of every node in the network. | | They should not be confused with [[node influence metric]]s, which seek to quantify the influence of every node in the network. |
| They should not be confused with node influence metrics, which seek to quantify the influence of every node in the network. | | They should not be confused with node influence metrics, which seek to quantify the influence of every node in the network. |
| | | |
− | 中心性不应与节点影响度相混淆,后者意在量化网络中每个节点的影响。
| + | 在'''<font color="#ff8000">图论 graph theory </font>'''和'''<font color="#ff8000">网络分析 network analysis </font>'''中,'''<font color="#ff8000">中心性 centrality </font>'''指标用于识别图中最重要的顶点。其应用包括在社会网络中识别出最有影响力的个人,在因特网或城市网络中识别出最为关键的基础设施节点,以及识别疾病的超级传播者。中心性的概念最初由'''<font color="#ff8000">社会网络分析 social network analysis</font>'''所发展,因此许多用于衡量中心性的术语都反映出了它们的社会学出身。中心性不应与节点影响度相混淆,后者意在量化网络中每个节点的影响。 |
| | | |
− | ==中心性指标的定义与特性Definition and characterization of centrality indices== | + | ==中心性指数的定义与特性Definition and characterization of centrality indices== |
| | | |
− | Centrality indices are answers to the question "What characterizes an important vertex?" The answer is given in terms of a real-valued function on the vertices of a graph, where the values produced are expected to provide a ranking which identifies the most important nodes.<ref name="Bonacich1987">{{cite journal |last1= Bonacich |first1= Phillip|year= 1987 |title= Power and Centrality: A Family of Measures | journal=American Journal of Sociology |volume= 92|issue= 5|pages= 1170–1182|doi=10.1086/228631 |url= }}<!--|accessdate=July 11, 2014--></ref><ref name="Borgatti2005">{{cite journal |last1= Borgatti |first1= Stephen P.|year= 2005 |title= Centrality and Network Flow |journal=Social Networks |volume= 27|issue= |pages= 55–71|doi=10.1016/j.socnet.2004.11.008 |url= |citeseerx= 10.1.1.387.419}}<!--|accessdate= July 11, 2014--></ref><ref name="Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista. 2018 E12201--E12208">{{cite journal | | + | Centrality indices are answers to the question "What characterizes an important vertex?" The answer is given in terms of a real-valued function on the vertices of a graph, where the values produced are expected to provide a ranking which identifies the most important nodes.<ref name="Bonacich1987">{{cite journal |last1= Bonacich |first1= Phillip|year= 1987 |title= Power and Centrality: A Family of Measures | journal=American Journal of Sociology |volume= 92|issue= 5|pages= 1170–1182|doi=10.1086/228631 |url= }}<!--|accessdate=July 11, 2014--></ref><ref name="Borgatti2005">{{cite journal |last1= Borgatti |first1= Stephen P.|year= 2005 |title= Centrality and Network Flow |journal=Social Networks |volume= 27|issue= |pages= 55–71|doi=10.1016/j.socnet.2004.11.008 |url= |citeseerx= 10.1.1.387.419}}<!--|accessdate= July 11, 2014--></ref><ref name="Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista. 2018 E12201--E12208">{{cite journal |author = Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista.|title = Eigenvector centrality for characterization of protein allosteric pathways|journal = Proceedings of the National Academy of Sciences|volume = 115|number = 52|pages = E12201–E12208|year = 2018|doi = 10.1073/pnas.1810452115|pmid = 30530700|pmc = 6310864}}</ref> |
| + | |
| + | Centrality indices are answers to the question "What characterizes an important vertex?" The answer is given in terms of a real-valued function on the vertices of a graph, where the values produced are expected to provide a ranking which identifies the most important nodes.<ref name="Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista. 2018 E12201--E12208">{{cite journal |author = Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista.|title = Eigenvector centrality for characterization of protein allosteric pathways|journal = Proceedings of the National Academy of Sciences|volume = 115|number = 52|pages = E12201–E12208|year = 2018|doi = 10.1073/pnas.1810452115|pmid = 30530700|pmc = 6310864}}</ref> |
| | | |
− | Centrality indices are answers to the question "What characterizes an important vertex?" The answer is given in terms of a real-valued function on the vertices of a graph, where the values produced are expected to provide a ranking which identifies the most important nodes.<ref name="Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista. 2018 E12201--E12208">{{cite journal |
| |
| | | |
| '''<font color="#ff8000">中心性指数Centrality indices </font>'''是对“重要顶点的特征是什么”这一问题的回答,答案以图顶点的实值函数的方式给出,在这些顶点上的取值的排序标识出最重要的节点。 | | '''<font color="#ff8000">中心性指数Centrality indices </font>'''是对“重要顶点的特征是什么”这一问题的回答,答案以图顶点的实值函数的方式给出,在这些顶点上的取值的排序标识出最重要的节点。 |
− |
| |
− | < ref name = “ Christian f. a. Negre,Uriel n. Morzan,Heidi p. Hendrickson,Rhitankar Pal,George p. Lisi,j. Patrick Loria,Ivan Rivalta,Junming Ho,Victor s. Batista。2018 E12201-- E12208” > { cite journal |
| |
− |
| |
− | author = Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista.|
| |
− |
| |
− | author = Christian F. A. Negre, Uriel N. Morzan, Heidi P. Hendrickson, Rhitankar Pal, George P. Lisi, J. Patrick Loria, Ivan Rivalta, Junming Ho, Victor S. Batista.|
| |
− |
| |
− | 作者: Christian f. a. Negre,Uriel n. Morzan,Heidi p. Hendrickson,Rhitankar Pal,George p. Lisi,j. Patrick Loria,Ivan Rivalta,Junming Ho,Victor s. Batista。|
| |
− |
| |
− | title = Eigenvector centrality for characterization of protein allosteric pathways|
| |
− |
| |
− | title = Eigenvector centrality for characterization of protein allosteric pathways|
| |
− |
| |
− | 蛋白质变构角色塑造的特征向量中心性
| |
− |
| |
− | journal = Proceedings of the National Academy of Sciences|
| |
− |
| |
− | journal = Proceedings of the National Academy of Sciences|
| |
− |
| |
− | 日记 = 美国国家科学院院刊 |
| |
− |
| |
− | volume = 115|
| |
− |
| |
− | volume = 115|
| |
− |
| |
− | 115 |
| |
− |
| |
− | number = 52|
| |
− |
| |
− | number = 52|
| |
− |
| |
− | 52 |
| |
− |
| |
− | pages = E12201–E12208|
| |
− |
| |
− | pages = E12201–E12208|
| |
− |
| |
− | Pages = E12201-E12208 |
| |
− |
| |
− | year = 2018|
| |
− |
| |
− | year = 2018|
| |
− |
| |
− | 2018年
| |
− |
| |
− | doi = 10.1073/pnas.1810452115|
| |
− |
| |
− | doi = 10.1073/pnas.1810452115|
| |
− |
| |
− | Doi = 10.1073/pnas. 1810452115 |
| |
− |
| |
− | pmid = 30530700|
| |
− |
| |
− | pmid = 30530700|
| |
− |
| |
− | 30530700 |
| |
− |
| |
− | pmc = 6310864}}</ref>
| |
− |
| |
− | pmc = 6310864}}</ref>
| |
− |
| |
− | 6310864} </ref >
| |
− |
| |
| | | |
| | | |