* A [[chain graph]] is a graph which may have both directed and undirected edges, but without any directed cycles (i.e. if we start at any vertex and move along the graph respecting the directions of any arrows, we cannot return to the vertex we started from if we have passed an arrow). Both directed acyclic graphs and undirected graphs are special cases of chain graphs, which can therefore provide a way of unifying and generalizing Bayesian and Markov networks.<ref>{{cite journal|last=Frydenberg|first=Morten|year=1990|title=The Chain Graph Markov Property|journal=[[Scandinavian Journal of Statistics]]|volume=17|issue=4|pages=333–353|mr=1096723|jstor=4616181 }} | * A [[chain graph]] is a graph which may have both directed and undirected edges, but without any directed cycles (i.e. if we start at any vertex and move along the graph respecting the directions of any arrows, we cannot return to the vertex we started from if we have passed an arrow). Both directed acyclic graphs and undirected graphs are special cases of chain graphs, which can therefore provide a way of unifying and generalizing Bayesian and Markov networks.<ref>{{cite journal|last=Frydenberg|first=Morten|year=1990|title=The Chain Graph Markov Property|journal=[[Scandinavian Journal of Statistics]]|volume=17|issue=4|pages=333–353|mr=1096723|jstor=4616181 }} |