第130行: |
第130行: |
| where <math>(\lambda_k)_k</math> and <math>(\mu_j)_j</math> are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good <math>x_j^k</math> for <math>j=1,\ldots,n</math> and <math>k=1,\ldots, m</math> and gives the following system of first-order conditions: | | where <math>(\lambda_k)_k</math> and <math>(\mu_j)_j</math> are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good <math>x_j^k</math> for <math>j=1,\ldots,n</math> and <math>k=1,\ldots, m</math> and gives the following system of first-order conditions: |
| | | |
− | 其中<math>(\lambda_k)_k</math>和<math>(\mu_j)_j</math>是乘子的向量。取关于商品的拉格朗日函数的偏导数<math>x_j^k</math>,其中<math>j=1,\ldots,n</math> ,<math>k=1,\ldots, m</math>,并给出以下一阶条件系统: | + | 其中<math>(\lambda_k)_k</math>和<math>(\mu_j)_j</math>是乘子的向量。取关于商品的拉格朗日函数的偏导数<math>x_j^k</math>(<math>j=1,\ldots,n</math> ,<math>k=1,\ldots, m</math>)并给出以下一阶条件系统: |
| | | |
− | :对于<math>j=1,\ldots,n</math>
| + | 对于<math>j=1,\ldots,n</math> |
− | ::<math>\frac{\partial L_i}{\partial x_j^i} = f_{x^i_j}^1-\mu_j=0\</math>
| + | :<math>\frac{\partial L_i}{\partial x_j^i} = f_{x^i_j}^1-\mu_j=0\</math> |
| | | |
| | | |
− | :对于<math>k= 2,\ldots,m</math>,<math>j=1,\ldots,n</math>
| + | 对于<math>k= 2,\ldots,m</math> , <math>j=1,\ldots,n</math> |
− | ::<math>\frac{\partial L_i}{\partial x_j^k} = -\lambda_k f_{x^k_j}^i-\mu_j=0</math>
| + | :<math>\frac{\partial L_i}{\partial x_j^k} = -\lambda_k f_{x^k_j}^i-\mu_j=0</math> |
| | | |
| | | |