更改

跳到导航 跳到搜索
删除14字节 、 2020年12月14日 (一) 17:20
无编辑摘要
第40行: 第40行:  
Thus <math>I(X;Y|Z)</math> is the expected (with respect to <math>Z</math>) [[Kullback–Leibler divergence]] from the conditional joint distribution <math>P_{(X,Y)|Z}</math> to the product of the conditional marginals <math>P_{X|Z}</math> and <math>P_{Y|Z}</math>. Compare with the definition of [[mutual information]].
 
Thus <math>I(X;Y|Z)</math> is the expected (with respect to <math>Z</math>) [[Kullback–Leibler divergence]] from the conditional joint distribution <math>P_{(X,Y)|Z}</math> to the product of the conditional marginals <math>P_{X|Z}</math> and <math>P_{Y|Z}</math>. Compare with the definition of [[mutual information]].
   −
因此,相较于互信息的定义,<math>I(X;Y|Z)</math>可以表达为期望的'''<font color="#ff8000"> Kullback-Leibler散度 Kullback–Leibler divergence </font>'''(相对于<math>Z</math>),即从条件联合分布<math>P_{(X,Y)|Z}</math>到条件边际<math>P_{X|Z}</math> 和 <math>P_{Y|Z}</math>的乘积。
+
因此,相较于互信息的定义,<math>I(X;Y|Z)</math>可以表达为期望的'''<font color="#ff8000"> KL散度 Kullback–Leibler divergence </font>'''(相对于<math>Z</math>),即从条件联合分布<math>P_{(X,Y)|Z}</math>到条件边际<math>P_{X|Z}</math> 和 <math>P_{Y|Z}</math>的乘积。
     
99

个编辑

导航菜单