第836行: |
第836行: |
| 微分方程中的拉普拉斯变换 | | 微分方程中的拉普拉斯变换 |
| * [[List of dynamical systems and differential equations topics]] | | * [[List of dynamical systems and differential equations topics]] |
− | 动力学系统和微分方程的列表
| + | 动力学系统列表和微分方程主题 |
| * [[Matrix differential equation]] | | * [[Matrix differential equation]] |
| 矩阵微分方程 | | 矩阵微分方程 |
第859行: |
第859行: |
| The energy method is a mathematical procedure that can be used to verify well-posedness of initial-boundary-value-problems.<ref>{{cite book |title=High Order Difference Methods for Time Dependent PDE | | The energy method is a mathematical procedure that can be used to verify well-posedness of initial-boundary-value-problems.<ref>{{cite book |title=High Order Difference Methods for Time Dependent PDE |
| | | |
− | 能量法是验证初边值问题适定性的一种数学方法。 时变偏微分方程的高阶差分方法
| + | 能量法是一种数学过程,可用于验证初始边界值问题的适定性。 |
| | | |
− | 能量法是一种数学过程,可用于验证初始边界值问题的适定性。在下面的示例中,将使用能量法决定应在何处施加哪些边界条件,以使得到的IBVP处于适当位置。考虑下式给出的一维双曲PDE
| + | In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by |
| | | |
− | |first=Bertil|last=Gustafsson|publisher=Springer|year=2008|isbn=978-3-540-74992-9|doi=10.1007/978-3-540-74993-6}}</ref> In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by
| + | In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by |
| | | |
− | |first=Bertil|last=Gustafsson|publisher=Springer|year=2008|isbn=978-3-540-74992-9|doi=10.1007/978-3-540-74993-6}}</ref> In the following example the energy method is used to decide where and which boundary conditions should be imposed such that the resulting IBVP is well-posed. Consider the one-dimensional hyperbolic PDE given by
| + | 在下面的示例中,将使用能量法决定应在何处施加哪些边界条件,以使得到的IBVP处于适当位置。考虑下式给出的一维双曲PDE |
− | | |
− | | first Bertil | last Gustafsson | publisher | Springer | year 2008 | isbn 978-3-540-74992-9 | doi 10.1007 / 978-3-540-74993-6} / ref 在下面的例子中,使用能量方法来决定应该施加哪些边界条件,使得得到的 IBVP适定。考虑一维双曲偏微分方程
| |
| | | |
| | | |
第884行: |
第882行: |
| where <math>\alpha \neq 0</math> is a constant and <math>u(x,t)</math> is an unknown function with initial condition <math>u(x,0) = f(x)</math>. Multiplying with <math>u</math> and integrating over the domain gives | | where <math>\alpha \neq 0</math> is a constant and <math>u(x,t)</math> is an unknown function with initial condition <math>u(x,0) = f(x)</math>. Multiplying with <math>u</math> and integrating over the domain gives |
| | | |
− | 其中 <math>\alpha \neq 0</math> 是常数,并且 <math>u(x,t)</math> 是未知函数,初始条件是 <math>u(x,0) = f(x)</math>。乘以 <math>u</math> 并在域上进行积分。 | + | 其中 <math>\alpha \neq 0</math> 是常数,并且 <math>u(x,t)</math> 是初始条件是 <math>u(x,0) = f(x)</math>的未知函数,乘以 <math>u</math> 并在域上进行积分。 |
| | | |
| | | |
第926行: |
第924行: |
| Here <math>\vert \vert \cdot \vert \vert</math> denotes the standard L2-norm. | | Here <math>\vert \vert \cdot \vert \vert</math> denotes the standard L2-norm. |
| | | |
− | 在这里,<math>\vert \vert \cdot \vert \vert</math> 表示标准的 L2-正则。 | + | 在这里,<math>\vert \vert \cdot \vert \vert</math> 表示标准的L2-正则。 |
| | | |
| For well-posedness we require that the energy of the solution is non-increasing, i.e. that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>, which is achieved by specifying <math>u</math> at <math>x = a</math> if <math>\alpha > 0</math> and at <math>x = b</math> if <math>\alpha < 0</math>. This corresponds to only imposing boundary conditions at the inflow. Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> holds when all data is set to zero. | | For well-posedness we require that the energy of the solution is non-increasing, i.e. that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math>, which is achieved by specifying <math>u</math> at <math>x = a</math> if <math>\alpha > 0</math> and at <math>x = b</math> if <math>\alpha < 0</math>. This corresponds to only imposing boundary conditions at the inflow. Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that <math>\frac{\partial}{\partial t} \vert \vert u \vert \vert ^2 \leq 0</math> holds when all data is set to zero. |