第195行: |
第195行: |
| | | |
| </blockquote> | | </blockquote> |
| + | |
| | | |
| whereas according to Neil Campbell and Jane Reece < blockquote >The phenomenon we call life defies a simple, one-sentence definition.<ref “Campbell”>{{cite book| last1 = Campbell | first1 = Neil A. | last2 = Reece | first2 = Jane B.| year = 2005| edition = 7 | title = Biology | location= Sn Feancisco | publisher = Benjamin }}</ref>< /blockquote > | | whereas according to Neil Campbell and Jane Reece < blockquote >The phenomenon we call life defies a simple, one-sentence definition.<ref “Campbell”>{{cite book| last1 = Campbell | first1 = Neil A. | last2 = Reece | first2 = Jane B.| year = 2005| edition = 7 | title = Biology | location= Sn Feancisco | publisher = Benjamin }}</ref>< /blockquote > |
第219行: |
第220行: |
| 现在越来越多人开始达成这么一个共识:如果一个实体有能力进行三种基本的功能活动:新陈代谢、自我修复,和复制,那么它就被认为是“有生命的”。 | | 现在越来越多人开始达成这么一个共识:如果一个实体有能力进行三种基本的功能活动:新陈代谢、自我修复,和复制,那么它就被认为是“有生命的”。 |
| </blockquote> | | </blockquote> |
| + | |
| | | |
| Dirk Schulze-Makuch and Louis Irwin spend in contrast the whole first chapter of their book on this subject. | | Dirk Schulze-Makuch and Louis Irwin spend in contrast the whole first chapter of their book on this subject. |
第228行: |
第230行: |
| [[File:Citric acid cycle.svg|thumb|upright=1.5|left|Citric acid cycle]] | | [[File:Citric acid cycle.svg|thumb|upright=1.5|left|Citric acid cycle]] |
| 柠檬酸循环 | | 柠檬酸循环 |
− | [[File:Metabolism diagram.svg|thumb|Overall diagram of the chemical reactions of metabolism, in which the citric acid cycle can be recognized as the circle just below the middle of the figure]] [[Albert L. Lehninger|Albert Lehninger]] has stated around 1970 that fermentation, including glycolysis, is a suitable primitive energy source for the origin of life.<ref name="Lehninger">{{cite book| last1 = Lehninger | first1 = Albert L. | year = 1970| title = Biochemistry. The Molecular Basis of Cell Structure and Function | location= New York | publisher = Worth | page = 313}}</ref> | + | [[File:Metabolism diagram.svg|thumb|Overall diagram of the chemical reactions of metabolism, in which the citric acid cycle can be recognized as the circle just below the middle of the figure 代谢化学反应的整体图,其中柠檬酸循环可以看作是位于图中间下方的圆圈]] [[Albert L. Lehninger|Albert Lehninger]] has stated around 1970 that fermentation, including glycolysis, is a suitable primitive energy source for the origin of life.<ref name="Lehninger">{{cite book| last1 = Lehninger | first1 = Albert L. | year = 1970| title = Biochemistry. The Molecular Basis of Cell Structure and Function | location= New York | publisher = Worth | page = 313}}</ref> |
| | | |
− | Overall diagram of the chemical reactions of metabolism, in which the citric acid cycle can be recognized as the circle just below the middle of the figure
| |
| | | |
− | 代谢化学反应的整体图,其中柠檬酸循环可以看作是位于图中间下方的圆圈
| |
| | | |
| Albert Lehninger has stated around 1970 that fermentation, including glycolysis, is a suitable primitive energy source for the origin of life. | | Albert Lehninger has stated around 1970 that fermentation, including glycolysis, is a suitable primitive energy source for the origin of life. |
第268行: |
第268行: |
| | | |
| 连Peter Mitchell自己也认为发酵是在化学渗透之前发生的。然而,化学渗透在生命中无处不在的。一个以化学渗透为基础的生命起源模型已经被提出来了。 | | 连Peter Mitchell自己也认为发酵是在化学渗透之前发生的。然而,化学渗透在生命中无处不在的。一个以化学渗透为基础的生命起源模型已经被提出来了。 |
| + | |
| | | |
| Both respiration by mitochondria and photosynthesis in chloroplasts make use of chemiosmosis to generate most of their ATP. | | Both respiration by mitochondria and photosynthesis in chloroplasts make use of chemiosmosis to generate most of their ATP. |
| | | |
| 线粒体的呼吸作用和叶绿体的光合作用都是利用化学渗透来产生大量ATP。 | | 线粒体的呼吸作用和叶绿体的光合作用都是利用化学渗透来产生大量ATP。 |
| + | |
| | | |
| Today the energy source of all life can be linked to photosynthesis, and one speaks of primary production by sunlight. The oxygen used for oxidizing reducing compounds by organisms at hydrothermal vents at the bottom of the ocean is the result of photosynthesis at the Oceans' surface. | | Today the energy source of all life can be linked to photosynthesis, and one speaks of primary production by sunlight. The oxygen used for oxidizing reducing compounds by organisms at hydrothermal vents at the bottom of the ocean is the result of photosynthesis at the Oceans' surface. |
第289行: |
第291行: |
| | | |
| 保罗·博耶Paul D. Boyer | | 保罗·博耶Paul D. Boyer |
| + | |
| | | |
| The mechanism of ATP synthesis is complex and involves a closed membrane in which the ATP synthase is embedded. The ATP is synthesized by the F1 subunit of ATP synthase by the binding change mechanism discovered by Paul Boyer. The energy required to release formed strongly-bound ATP has its origin in protons that move across the membrane. These protons have been set across the membrane during respiration or photosynthesis. | | The mechanism of ATP synthesis is complex and involves a closed membrane in which the ATP synthase is embedded. The ATP is synthesized by the F1 subunit of ATP synthase by the binding change mechanism discovered by Paul Boyer. The energy required to release formed strongly-bound ATP has its origin in protons that move across the membrane. These protons have been set across the membrane during respiration or photosynthesis. |
| | | |
− | ATP的合成机制很复杂,涉及到ATP合成酶嵌入的封闭膜。ATP是由ATP合成酶的F1亚基通过Paul Boyer发现的结合变化机制合成的。释放形成的强结合ATP所需的能量起源于穿过膜的质子。这些质子在呼吸作用或光合作用过程中被设置在膜上。
| + | ATP的合成机制很复杂,涉及到ATP合成酶所嵌入的封闭膜。ATP是由ATP合成酶的''F1亚基''通过 Paul Boyer 发现的结合变化机制合成的。释放强结合ATP所需的能量源自穿过膜的质子。这些质子在呼吸作用或光合作用过程中被设置在膜上。 |
| | | |
− | ====RNA world==== | + | ====RNA世界 RNA world==== |
− | RNA世界
| + | |
| + | |
| + | [[File:010 small subunit-1FKA.gif|thumb|upright=1.25|Molecular structure of the [[30S|ribosome 30S subunit]] from ''[[Thermus thermophilus]]''. 在分子结构核糖体30S亚基从嗜热。蛋白质显示为蓝色,单个RNA链显示为橙色。 <ref name="Venki">{{cite journal |last1=Wimberly |first1=Brian T. |last2=Brodersen |first2=Ditlev E. |last3=Clemons |first3=William M. Jr. |last4=Morgan-Warren |first4=Robert J. |last5=Carter |first5=Andrew P. |last6=Vonrhein |first6=Clemens |last7=Hartsch |first7=Thomas |last8=Ramakrishnan |first8=V. |authorlink8=Venkatraman Ramakrishnan |display-authors=3 |date=21 September 2000 |title=Structure of the 30S ribosomal subunit |journal=Nature |volume=407 |issue=6802 |pages=327–339 |doi=10.1038/35030006 |pmid=11014182|bibcode=2000Natur.407..327W |s2cid=4419944 }}</ref> [[Protein]]s are shown in blue and the single [[RNA]] chain in orange.]] |
| | | |
− | [[File:010 small subunit-1FKA.gif|thumb|upright=1.25|Molecular structure of the [[30S|ribosome 30S subunit]] from ''[[Thermus thermophilus]]''.<ref name="Venki">{{cite journal |last1=Wimberly |first1=Brian T. |last2=Brodersen |first2=Ditlev E. |last3=Clemons |first3=William M. Jr. |last4=Morgan-Warren |first4=Robert J. |last5=Carter |first5=Andrew P. |last6=Vonrhein |first6=Clemens |last7=Hartsch |first7=Thomas |last8=Ramakrishnan |first8=V. |authorlink8=Venkatraman Ramakrishnan |display-authors=3 |date=21 September 2000 |title=Structure of the 30S ribosomal subunit |journal=Nature |volume=407 |issue=6802 |pages=327–339 |doi=10.1038/35030006 |pmid=11014182|bibcode=2000Natur.407..327W |s2cid=4419944 }}</ref> [[Protein]]s are shown in blue and the single [[RNA]] chain in orange.]]
| |
| | | |
− | Molecular structure of the ribosome 30S subunit from Thermus thermophilus.[71] Proteins are shown in blue and the single RNA chain in orange.
| |
| | | |
− | 在分子结构核糖体30S亚基从嗜热。蛋白质显示为蓝色,单个RNA链显示为橙色。
| |
| | | |
| The [[RNA world]] hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins.<ref name="NYT-20140925-CZ">{{cite news |last=Zimmer |first=Carl |date=25 September 2014 |title=A Tiny Emissary From the Ancient Past |url=https://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |newspaper=The New York Times |location=New York |accessdate=2014-09-26 |url-status=live |archiveurl=https://web.archive.org/web/20140927022738/http://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |archivedate=27 September 2014}}</ref> It is widely accepted that current life on Earth descends from an RNA world,<ref name="RNA">*{{cite journal |last1=Copley |first1=Shelley D. |last2=Smith |first2=Eric |last3=Morowitz |first3=Harold J. |authorlink3=Harold J. Morowitz |date=December 2007 |title=The origin of the RNA world: Co-evolution of genes and metabolism |url=http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |journal=Bioorganic Chemistry |volume=35 |issue=6 |pages=430–443 |doi=10.1016/j.bioorg.2007.08.001 |pmid=17897696 |accessdate=2015-06-08 |quote=The proposal that life on Earth arose from an RNA world is widely accepted. |url-status=live |archiveurl=https://web.archive.org/web/20130905070129/http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |archivedate=5 September 2013}} | | The [[RNA world]] hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins.<ref name="NYT-20140925-CZ">{{cite news |last=Zimmer |first=Carl |date=25 September 2014 |title=A Tiny Emissary From the Ancient Past |url=https://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |newspaper=The New York Times |location=New York |accessdate=2014-09-26 |url-status=live |archiveurl=https://web.archive.org/web/20140927022738/http://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |archivedate=27 September 2014}}</ref> It is widely accepted that current life on Earth descends from an RNA world,<ref name="RNA">*{{cite journal |last1=Copley |first1=Shelley D. |last2=Smith |first2=Eric |last3=Morowitz |first3=Harold J. |authorlink3=Harold J. Morowitz |date=December 2007 |title=The origin of the RNA world: Co-evolution of genes and metabolism |url=http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |journal=Bioorganic Chemistry |volume=35 |issue=6 |pages=430–443 |doi=10.1016/j.bioorg.2007.08.001 |pmid=17897696 |accessdate=2015-06-08 |quote=The proposal that life on Earth arose from an RNA world is widely accepted. |url-status=live |archiveurl=https://web.archive.org/web/20130905070129/http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |archivedate=5 September 2013}} |
第307行: |
第309行: |
| The RNA world hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins. It is widely accepted that current life on Earth descends from an RNA world, although RNA-based life may not have been the first life to exist. The structure of the ribosome has been called the "smoking gun," as it showed that the ribosome is a ribozyme, with a central core of RNA and no amino acid side chains within 18 angstroms of the active site where peptide bond formation is catalyzed. | | The RNA world hypothesis describes an early Earth with self-replicating and catalytic RNA but no DNA or proteins. It is widely accepted that current life on Earth descends from an RNA world, although RNA-based life may not have been the first life to exist. The structure of the ribosome has been called the "smoking gun," as it showed that the ribosome is a ribozyme, with a central core of RNA and no amino acid side chains within 18 angstroms of the active site where peptide bond formation is catalyzed. |
| | | |
− | RNA世界假说描述了一个具有自我复制和催化RNA但没有DNA或蛋白质的早期地球。 这个结论是由许多独立的证据得出的,例如观察到RNA是翻译过程的核心,并且小RNA可以催化生命所需的所有化学基团和信息转移。核糖体的结构被称为 "确凿的证据",因为它表明核糖体是一个核糖体,其核心是RNA,并且在催化肽键形成的活性位点18角以内没有氨基酸侧链。
| + | RNA世界假说描述了一个具有自我复制和催化的RNA,但没有DNA和蛋白质的早期地球。<ref name="NYT-20140925-CZ">{{cite news |last=Zimmer |first=Carl |date=25 September 2014 |title=A Tiny Emissary From the Ancient Past |url=https://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |newspaper=The New York Times |location=New York |accessdate=2014-09-26 |url-status=live |archiveurl=https://web.archive.org/web/20140927022738/http://www.nytimes.com/2014/09/25/science/a-tiny-emissary-from-the-ancient-past.html |archivedate=27 September 2014}}</ref> 现在普遍认为现在地球上的生命起源于这个RNA世界,尽管基于RNA的生命可能并不是最早存在的生命。<ref name="RNA">*{{cite journal |last1=Copley |first1=Shelley D. |last2=Smith |first2=Eric |last3=Morowitz |first3=Harold J. |authorlink3=Harold J. Morowitz |date=December 2007 |title=The origin of the RNA world: Co-evolution of genes and metabolism |url=http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |journal=Bioorganic Chemistry |volume=35 |issue=6 |pages=430–443 |doi=10.1016/j.bioorg.2007.08.001 |pmid=17897696 |accessdate=2015-06-08 |quote=The proposal that life on Earth arose from an RNA world is widely accepted. |url-status=live |archiveurl=https://web.archive.org/web/20130905070129/http://tuvalu.santafe.edu/~desmith/PDF_pubs/Copley_BOG.pdf |archivedate=5 September 2013}}这个结论是由许多独立的证据得出的,例如观察到RNA是翻译过程的核心,并且小RNA可以催化生命所需的所有化学基团和信息转移。核糖体的结构被称为 "确凿的证据",因为它表明核糖体是一个核糖体,其核心是RNA,并且在催化肽键形成的活性位点18角以内没有氨基酸侧链。 |
| | | |
| The concept of the RNA world was first proposed in 1962 by [[Alexander Rich]],<ref>{{cite journal |last1=Neveu |first1=Marc |last2=Kim |first2=Hyo-Joong |last3=Benner |first3=Steven A. |date=22 April 2013 |title=The 'Strong' RNA World Hypothesis: Fifty Years Old |journal=Astrobiology |volume=13 |issue=4 |pages=391–403 |bibcode=2013AsBio..13..391N |doi=10.1089/ast.2012.0868 |pmid=23551238 |ref=harv}}</ref> and the term was coined by [[Walter Gilbert]] in 1986.<ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |authorlink=Thomas Cech |date=July 2012 |title=The RNA Worlds in Context |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585}}</ref><ref>{{cite journal |last=Gilbert |first=Walter |authorlink=Walter Gilbert |date=20 February 1986 |title=Origin of life: The RNA world |journal=Nature |volume=319 |issue=6055 |page=618 |bibcode=1986Natur.319..618G |doi=10.1038/319618a0 |s2cid=8026658 }}</ref> | | The concept of the RNA world was first proposed in 1962 by [[Alexander Rich]],<ref>{{cite journal |last1=Neveu |first1=Marc |last2=Kim |first2=Hyo-Joong |last3=Benner |first3=Steven A. |date=22 April 2013 |title=The 'Strong' RNA World Hypothesis: Fifty Years Old |journal=Astrobiology |volume=13 |issue=4 |pages=391–403 |bibcode=2013AsBio..13..391N |doi=10.1089/ast.2012.0868 |pmid=23551238 |ref=harv}}</ref> and the term was coined by [[Walter Gilbert]] in 1986.<ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |authorlink=Thomas Cech |date=July 2012 |title=The RNA Worlds in Context |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585}}</ref><ref>{{cite journal |last=Gilbert |first=Walter |authorlink=Walter Gilbert |date=20 February 1986 |title=Origin of life: The RNA world |journal=Nature |volume=319 |issue=6055 |page=618 |bibcode=1986Natur.319..618G |doi=10.1038/319618a0 |s2cid=8026658 }}</ref> |
第313行: |
第315行: |
| The concept of the RNA world was first proposed in 1962 by Alexander Rich, and the term was coined by Walter Gilbert in 1986. | | The concept of the RNA world was first proposed in 1962 by Alexander Rich, and the term was coined by Walter Gilbert in 1986. |
| | | |
− | RNA世界的概念是由亚历山大-里奇Alexander Rich在1962年首次提出的,这个术语是由沃尔特-吉尔伯特Walter Gilbert在1986年创造的。 | + | RNA世界的概念是由亚历山大-里奇Alexander Rich在1962年首次提出的<ref>{{cite journal |last1=Neveu |first1=Marc |last2=Kim |first2=Hyo-Joong |last3=Benner |first3=Steven A. |date=22 April 2013 |title=The 'Strong' RNA World Hypothesis: Fifty Years Old |journal=Astrobiology |volume=13 |issue=4 |pages=391–403 |bibcode=2013AsBio..13..391N |doi=10.1089/ast.2012.0868 |pmid=23551238 |ref=harv}}</ref> ,而这个术语则是由沃尔特-吉尔伯特Walter Gilbert在1986年创造的。<ref name="Cech2012">{{cite journal |last=Cech |first=Thomas R. |authorlink=Thomas Cech |date=July 2012 |title=The RNA Worlds in Context |journal=Cold Spring Harbor Perspectives in Biology |volume=4 |issue=7 |page=a006742 |doi=10.1101/cshperspect.a006742 |pmc=3385955 |pmid=21441585}}</ref><ref>{{cite journal |last=Gilbert |first=Walter |authorlink=Walter Gilbert |date=20 February 1986 |title=Origin of life: The RNA world |journal=Nature |volume=319 |issue=6055 |page=618 |bibcode=1986Natur.319..618G |doi=10.1038/319618a0 |s2cid=8026658 }}</ref> |
| | | |
| In March 2020, astronomer Tomonori Totani presented a statistical approach for explaining how an initial active RNA molecule might have been produced randomly in the [[universe]] sometime since the [[Big Bang]].<ref name="UT-20200310">{{cite news |last=Gough |first=Evan |title=Life Could be Common Across the Universe, Just Not in Our Region |url=https://www.universetoday.com/145304/life-could-be-common-across-the-universe-just-not-in-our-region/ |date=10 March 2020 |work=[[Universe Today]] |accessdate=15 March 2020 }}</ref><ref name="SR-20200203">{{cite journal |last=Totani |first=Tomonori |title=Emergence of life in an inflationary universe |date=3 February 2020 |journal=[[Scientific Reports]] |volume=10 |number=1671 |pages=1671 |doi=10.1038/s41598-020-58060-0 |pmid=32015390 |pmc=6997386 |arxiv=1911.08092 |bibcode=2020NatSR..10.1671T |doi-access=free }}</ref> | | In March 2020, astronomer Tomonori Totani presented a statistical approach for explaining how an initial active RNA molecule might have been produced randomly in the [[universe]] sometime since the [[Big Bang]].<ref name="UT-20200310">{{cite news |last=Gough |first=Evan |title=Life Could be Common Across the Universe, Just Not in Our Region |url=https://www.universetoday.com/145304/life-could-be-common-across-the-universe-just-not-in-our-region/ |date=10 March 2020 |work=[[Universe Today]] |accessdate=15 March 2020 }}</ref><ref name="SR-20200203">{{cite journal |last=Totani |first=Tomonori |title=Emergence of life in an inflationary universe |date=3 February 2020 |journal=[[Scientific Reports]] |volume=10 |number=1671 |pages=1671 |doi=10.1038/s41598-020-58060-0 |pmid=32015390 |pmc=6997386 |arxiv=1911.08092 |bibcode=2020NatSR..10.1671T |doi-access=free }}</ref> |
第319行: |
第321行: |
| In March 2020, astronomer Tomonori Totani presented a statistical approach for explaining how an initial active RNA molecule might have been produced randomly in the universe sometime since the Big Bang. | | In March 2020, astronomer Tomonori Totani presented a statistical approach for explaining how an initial active RNA molecule might have been produced randomly in the universe sometime since the Big Bang. |
| | | |
− | 在2020年3月,天文学家Tomonori Totani提出了一种统计方法,用于解释初始活性RNA分子如何可能在宇宙大爆炸后的某个时间随机产生。 | + | 在2020年3月,天文学家Tomonori Totani提出了一种统计方法,用于解释初始的活性RNA分子是如何在宇宙大爆炸后某个时间随机产生的。<ref name="UT-20200310">{{cite news |last=Gough |first=Evan |title=Life Could be Common Across the Universe, Just Not in Our Region |url=https://www.universetoday.com/145304/life-could-be-common-across-the-universe-just-not-in-our-region/ |date=10 March 2020 |work=[[Universe Today]] |accessdate=15 March 2020 }}</ref><ref name="SR-20200203">{{cite journal |last=Totani |first=Tomonori |title=Emergence of life in an inflationary universe |date=3 February 2020 |journal=[[Scientific Reports]] |volume=10 |number=1671 |pages=1671 |doi=10.1038/s41598-020-58060-0 |pmid=32015390 |pmc=6997386 |arxiv=1911.08092 |bibcode=2020NatSR..10.1671T |doi-access=free }}</ref> |
| + | |
| + | ===系统发育和最后的普遍共同祖先 Phylogeny and LUCA=== |
| + | |
| | | |
− | ===Phylogeny and LUCA=== | + | [[File:Phylogenic Tree-en.svg|upright=1.65|thumb|A [[cladistics|cladogram]] demonstrating extreme [[hyperthermophile]]s as occur in volcanic hot springs at the base of the [[Phylogenetic tree|phylogenetic tree of life 甲分支图表明极端超嗜热处的基部作为发生在火山温泉寿命的系统发生树。]]]] |
− | 系统发育和最后普遍共同祖先
| |
| | | |
− | [[File:Phylogenic Tree-en.svg|upright=1.65|thumb|A [[cladistics|cladogram]] demonstrating extreme [[hyperthermophile]]s as occur in volcanic hot springs at the base of the [[Phylogenetic tree|phylogenetic tree of life]].]]
| |
| | | |
− | A cladogram demonstrating extreme hyperthermophiles as occur in volcanic hot springs at the base of the phylogenetic tree of life.
| |
| | | |
− | 甲分支图表明极端超嗜热处的基部作为发生在火山温泉寿命的系统发生树。
| |
| | | |
| The most commonly accepted location of the root of the tree of life is between a monophyletic domain [[Bacteria]] and a clade formed by [[Archaea]] and [[Eukaryota]] of what is referred to as the "traditional tree of life" based on several molecular studies starting with [[Carl Woese]].<ref>{{cite book |editor1-first=David R. |editor1-last=Boone |editor2-first=Richard W. |editor2-last=Castenholz |editor3-first=George M. |editor3-last=Garrity |title=The ''Archaea'' and the Deeply Branching and Phototrophic ''Bacteria'' |series=Bergey's Manual of Systematic Bacteriology |isbn=978-0-387-21609-6 |url=https://www.springer.com/life+sciences/microbiology/book/978-0-387-98771-2 |url-status=live |archiveurl=https://web.archive.org/web/20141225112809/http://www.springer.com/life+sciences/microbiology/book/978-0-387-98771-2 |archivedate=25 December 2014|publisher=Springer |year=2001 }}{{page needed|date=June 2014}}</ref><ref>{{cite journal |vauthors=Woese CR, Fox GE |title= Phylogenetic structure of the prokaryotic domain: the primary kingdoms. |journal= Proc Natl Acad Sci U S A |volume=74|pages= 5088–5090 |year=1977 |issue= 11 |pmid=270744 |pmc=432104|doi=10.1073/pnas.74.11.5088|bibcode= 1977PNAS...74.5088W }}</ref> | | The most commonly accepted location of the root of the tree of life is between a monophyletic domain [[Bacteria]] and a clade formed by [[Archaea]] and [[Eukaryota]] of what is referred to as the "traditional tree of life" based on several molecular studies starting with [[Carl Woese]].<ref>{{cite book |editor1-first=David R. |editor1-last=Boone |editor2-first=Richard W. |editor2-last=Castenholz |editor3-first=George M. |editor3-last=Garrity |title=The ''Archaea'' and the Deeply Branching and Phototrophic ''Bacteria'' |series=Bergey's Manual of Systematic Bacteriology |isbn=978-0-387-21609-6 |url=https://www.springer.com/life+sciences/microbiology/book/978-0-387-98771-2 |url-status=live |archiveurl=https://web.archive.org/web/20141225112809/http://www.springer.com/life+sciences/microbiology/book/978-0-387-98771-2 |archivedate=25 December 2014|publisher=Springer |year=2001 }}{{page needed|date=June 2014}}</ref><ref>{{cite journal |vauthors=Woese CR, Fox GE |title= Phylogenetic structure of the prokaryotic domain: the primary kingdoms. |journal= Proc Natl Acad Sci U S A |volume=74|pages= 5088–5090 |year=1977 |issue= 11 |pmid=270744 |pmc=432104|doi=10.1073/pnas.74.11.5088|bibcode= 1977PNAS...74.5088W }}</ref> |