更改

跳到导航 跳到搜索
添加71字节 、 2021年1月18日 (一) 00:11
第120行: 第120行:  
In [[algebraic geometry]], a [[singular point of an algebraic variety|singularity of an algebraic variety]] is a point of the variety where the [[tangent space]] may not be regularly defined. The simplest example of singularities are curves that cross themselves. But there are other types of singularities, like [[cusp (singularity)|cusps]]. For example, the equation {{math|1= ''y''{{sup|2}} − ''x''{{sup|3}} = 0 }} defines a curve that has a cusp at the origin {{math|1= ''x'' = ''y'' = 0 }}. One could define the {{math|''x''}}-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the {{math|''x''}}-axis is a "double tangent."
 
In [[algebraic geometry]], a [[singular point of an algebraic variety|singularity of an algebraic variety]] is a point of the variety where the [[tangent space]] may not be regularly defined. The simplest example of singularities are curves that cross themselves. But there are other types of singularities, like [[cusp (singularity)|cusps]]. For example, the equation {{math|1= ''y''{{sup|2}} − ''x''{{sup|3}} = 0 }} defines a curve that has a cusp at the origin {{math|1= ''x'' = ''y'' = 0 }}. One could define the {{math|''x''}}-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the {{math|''x''}}-axis is a "double tangent."
   −
在代数几何中,'''代数簇的奇点'''是簇中切线空间可能没有规则定义的一点。奇点最简单的例子就是它们自己交叉的曲线。但是还有其他类型的奇点,比如尖点。例如,方程 -x = 0定义了一条在原点有一个尖点的曲线。可以将-轴定义为这一点的切线,但这个定义不能与其他点的定义相同。实际上,在这种情况下,-轴是一个“双切线”。
+
在代数几何中,'''代数簇的奇点'''是簇中切线空间可能没有规则定义的一点。奇点最简单的例子就是它们自己交叉的曲线。但是还有其他类型的奇点,比如尖点。例如,方程 {{math|1= ''y''{{sup|2}} − ''x''{{sup|3}} = 0 }}定义了一条在原点{{math|1= ''x'' = ''y'' = 0 }有一个尖点的曲线。可以将x轴定义为这一点的切线,但这个定义不能与其他点的定义相同。实际上,在这种情况下,-轴是一个“双切线”。
      第127行: 第127行:     
可以给出一个关于[[交换代数 commutative algebra]]的等价定义,它扩展到抽象的簇和方案: 如果局部环在这一点上不是一个正则局部环,那么该点为'''奇点'''。
 
可以给出一个关于[[交换代数 commutative algebra]]的等价定义,它扩展到抽象的簇和方案: 如果局部环在这一点上不是一个正则局部环,那么该点为'''奇点'''。
  −
      
==参见==
 
==参见==
7,129

个编辑

导航菜单