| Presently, one of the main results of econophysics comprises the explanation of the [[Fat-tailed distribution|"fat tails"]] in the distribution of many kinds of financial data as a [[Universality class|universal]] self-similar [[scaling invariance|scaling]] property (i.e. scale invariant over many orders of magnitude in the data),<ref>The physicists noted the scaling behaviour of "fat tails" through a letter to the scientific journal ''[[Nature (journal)|Nature]]'' by Rosario N. Mantegna and H. Eugene Stanley: ''Scaling behavior in the dynamics of an economic index'', Nature Vol. 376, pages 46-49 (1995)</ref> arising from the tendency of individual market competitors, or of aggregates of them, to exploit systematically and optimally the prevailing "microtrends" (e.g., rising or falling prices). These "fat tails" are not only mathematically important, because they comprise the [[risk]]s, which may be on the one hand, very small such that one may tend to neglect them, but which - on the other hand - are not negligible at all, i.e. they can never be made exponentially tiny, but instead follow a measurable algebraically decreasing power law, for example with a ''failure probability'' of only <math>P\propto x^{-4}\,,</math> where ''x'' is an increasingly large variable in the tail region of the distribution considered (i.e. a price statistics with much more than 10<sup>8</sup> data). I.e., the events considered are not simply "outliers" but must really be taken into account and cannot be "insured away".<ref name="Preis" /> It appears that it also plays a role that near a change of the tendency (e.g. from falling to rising prices) there are typical "panic reactions" of the selling or buying agents with algebraically increasing bargain rapidities and volumes.<ref name="Preis">See for example Preis, Mantegna, 2003.</ref> The "fat tails" are also observed in [[commodity market]]s. | | Presently, one of the main results of econophysics comprises the explanation of the [[Fat-tailed distribution|"fat tails"]] in the distribution of many kinds of financial data as a [[Universality class|universal]] self-similar [[scaling invariance|scaling]] property (i.e. scale invariant over many orders of magnitude in the data),<ref>The physicists noted the scaling behaviour of "fat tails" through a letter to the scientific journal ''[[Nature (journal)|Nature]]'' by Rosario N. Mantegna and H. Eugene Stanley: ''Scaling behavior in the dynamics of an economic index'', Nature Vol. 376, pages 46-49 (1995)</ref> arising from the tendency of individual market competitors, or of aggregates of them, to exploit systematically and optimally the prevailing "microtrends" (e.g., rising or falling prices). These "fat tails" are not only mathematically important, because they comprise the [[risk]]s, which may be on the one hand, very small such that one may tend to neglect them, but which - on the other hand - are not negligible at all, i.e. they can never be made exponentially tiny, but instead follow a measurable algebraically decreasing power law, for example with a ''failure probability'' of only <math>P\propto x^{-4}\,,</math> where ''x'' is an increasingly large variable in the tail region of the distribution considered (i.e. a price statistics with much more than 10<sup>8</sup> data). I.e., the events considered are not simply "outliers" but must really be taken into account and cannot be "insured away".<ref name="Preis" /> It appears that it also plays a role that near a change of the tendency (e.g. from falling to rising prices) there are typical "panic reactions" of the selling or buying agents with algebraically increasing bargain rapidities and volumes.<ref name="Preis">See for example Preis, Mantegna, 2003.</ref> The "fat tails" are also observed in [[commodity market]]s. |
| As in quantum field theory the "fat tails" can be obtained by complicated "[[nonperturbative]]" methods, mainly by numerical ones, since they contain the deviations from the usual [[Gaussian distribution|Gaussian approximations]], e.g. the [[Black–Scholes model|Black–Scholes]] theory. Fat tails can, however, also be due to other phenomena, such as a random number of terms in the central-limit theorem, or any number of other, non-econophysics models. Due to the difficulty in testing such models, they have received less attention in traditional economic analysis. | | As in quantum field theory the "fat tails" can be obtained by complicated "[[nonperturbative]]" methods, mainly by numerical ones, since they contain the deviations from the usual [[Gaussian distribution|Gaussian approximations]], e.g. the [[Black–Scholes model|Black–Scholes]] theory. Fat tails can, however, also be due to other phenomena, such as a random number of terms in the central-limit theorem, or any number of other, non-econophysics models. Due to the difficulty in testing such models, they have received less attention in traditional economic analysis. |