更改

跳到导航 跳到搜索
添加314字节 、 2021年1月27日 (三) 18:31
无编辑摘要
第24行: 第24行:  
The earliest mention of experiments on the neural basis of working memory can be traced back to more than 100 years ago, when Hitzig and Ferrier described ablation experiments of the prefrontal cortex (PFC); they concluded that the frontal cortex was important for cognitive rather than sensory processes. In 1935 and 1936, Carlyle Jacobsen and colleagues were the first to show the deleterious effect of prefrontal ablation on delayed response.
 
The earliest mention of experiments on the neural basis of working memory can be traced back to more than 100 years ago, when Hitzig and Ferrier described ablation experiments of the prefrontal cortex (PFC); they concluded that the frontal cortex was important for cognitive rather than sensory processes. In 1935 and 1936, Carlyle Jacobsen and colleagues were the first to show the deleterious effect of prefrontal ablation on delayed response.
   −
关于工作记忆神经学基础的实验最早可追溯到100多年前希齐格 Hitzig 和费里尔 Ferrier 对前额叶皮质消融实验的研究(PFC)。'''<font color="#ff8000">额叶皮层 frontal cortex对认知程序比对感官程序更重要是当时研究得出的一大结论<ref name=Fuster1>{{Cite book|last1= Fuster|first1= Joaquin |title= The prefrontal cortex |page= 126 |url= https://books.google.com/books?id=zuZlvNICdhUC&pg=PT140 |edition= 4 |year= 2008 |publisher= Elsevier |location= Oxford, UK |isbn= 978-0-12-373644-4}}</ref>。在1935年和1936年, 卡莱尔 · 雅各布森 Carlyle Jacobsen及其同事们首次披露了前额叶切除对延时反映的不良影响<ref name=Fuster1 /><ref name=Benton>{{Cite book|last1= Benton|first1= A.&nbsp;L.|editor1-first= Harvey,&nbsp;S.|editor1-last= Levin|editor2-first= Howard,&nbsp;M.|editor2-last= Eisenberg|editor3-first= Arthur,&nbsp;L.|editor3-last= Benton|title= Frontal lobe function and dysfunction|chapter-url= https://books.google.com/books?id=9b1htO0V0rwC&pg=PA19&lpg=PA19&dq=Jacobsen++prefrontal+ablation&q=Jacobsen%20%20prefrontal%20ablation|year= 1991|publisher= Oxford University Press|location= New York|isbn= 978-0-19-506284-7|page= 19|chapter= The prefrontal region:Its early history}}</ref>
+
关于工作记忆神经学基础的实验最早可追溯到100多年前希齐格 Hitzig 和费里尔 Ferrier 对前额叶皮质消融实验的研究(PFC)。'''<font color="#ff8000">额叶皮层 frontal cortex</font>'''对认知程序比对感官程序更重要是当时研究得出的一大结论<ref name=Fuster1>{{Cite book|last1= Fuster|first1= Joaquin |title= The prefrontal cortex |page= 126 |url= https://books.google.com/books?id=zuZlvNICdhUC&pg=PT140 |edition= 4 |year= 2008 |publisher= Elsevier |location= Oxford, UK |isbn= 978-0-12-373644-4}}</ref>。在1935年和1936年, 卡莱尔 · 雅各布森 Carlyle Jacobsen及其同事们首次披露了前额叶切除对延时反映的不良影响<ref name=Fuster1 /><ref name=Benton>{{Cite book|last1= Benton|first1= A.&nbsp;L.|editor1-first= Harvey,&nbsp;S.|editor1-last= Levin|editor2-first= Howard,&nbsp;M.|editor2-last= Eisenberg|editor3-first= Arthur,&nbsp;L.|editor3-last= Benton|title= Frontal lobe function and dysfunction|chapter-url= https://books.google.com/books?id=9b1htO0V0rwC&pg=PA19&lpg=PA19&dq=Jacobsen++prefrontal+ablation&q=Jacobsen%20%20prefrontal%20ablation|year= 1991|publisher= Oxford University Press|location= New York|isbn= 978-0-19-506284-7|page= 19|chapter= The prefrontal region:Its early history}}</ref>
 
 
   第53行: 第53行:  
In 1974, Baddeley and Hitch introduced the multicomponent model of working memory. The theory proposed a model containing three components: the central executive, the phonological loop, and the visuospatial sketchpad with the central executive functioning as a control center of sorts, directing info between the phonological and visuospatial components. The central executive is responsible for, among other things, directing attention to relevant information, suppressing irrelevant information and inappropriate actions, and coordinating cognitive processes when more than one task is simultaneously performed. A "central executive" is responsible for supervising the integration of information and for coordinating subordinate systems responsible for the short-term maintenance of information. One subordinate system, the phonological loop (PL), stores phonological information (that is, the sound of language) and prevents its decay by continuously refreshing it in a rehearsal loop. It can, for example, maintain a seven-digit telephone number for as long as one repeats the number to oneself again and again. The other subordinate system, the visuospatial sketchpad, stores visual and spatial information. It can be used, for example, for constructing and manipulating visual images and for representing mental maps. The sketchpad can be further broken down into a visual subsystem (dealing with such phenomena as shape, colour, and texture), and a spatial subsystem (dealing with location).
 
In 1974, Baddeley and Hitch introduced the multicomponent model of working memory. The theory proposed a model containing three components: the central executive, the phonological loop, and the visuospatial sketchpad with the central executive functioning as a control center of sorts, directing info between the phonological and visuospatial components. The central executive is responsible for, among other things, directing attention to relevant information, suppressing irrelevant information and inappropriate actions, and coordinating cognitive processes when more than one task is simultaneously performed. A "central executive" is responsible for supervising the integration of information and for coordinating subordinate systems responsible for the short-term maintenance of information. One subordinate system, the phonological loop (PL), stores phonological information (that is, the sound of language) and prevents its decay by continuously refreshing it in a rehearsal loop. It can, for example, maintain a seven-digit telephone number for as long as one repeats the number to oneself again and again. The other subordinate system, the visuospatial sketchpad, stores visual and spatial information. It can be used, for example, for constructing and manipulating visual images and for representing mental maps. The sketchpad can be further broken down into a visual subsystem (dealing with such phenomena as shape, colour, and texture), and a spatial subsystem (dealing with location).
   −
1974年,Baddeley和Hitch<ref name="Baddeley Hitch 1974">{{cite book | last1 = Baddeley    | first1 = Alan D.  | last2 = Hitch | first2 = Graham  | title = Working Memory | volume = 2 | editor = Gordon H. Bower | work = The psychology of learning and motivation | publisher = Academic Press | year = 1974 | pages = 47–89 | isbn = 978-0-12-543308-2 |oclc = 777285348 |doi= 10.1016/S0079-7421(08)60452-1}}</ref>提出了'''<font color="#ff8000">工作记忆多组件模型 Multicomponent Model of Working Memory</font>'''——该模型由三个组件构成:'''<font color="#ff8000">中央执行器 Central Executive</font>'''、'''<font color="#ff8000">语音回路(PL) Phonological Loop (PL)</font>'''、'''<font color="#ff8000">视觉绘板 Visuospatial Sketchpad</font>'''<ref name="Levin 2011">{{Cite book|title = Working Memory : Capacity, Developments and Improvement Techniques|last = Levin|first = E.S.|publisher = [[Nova Science Publishers, Inc.]]|year = 2011|location = New York}}</ref>。其中,中央执行器作为某种控制中心,负责疏通语音回路和视觉绘板之间的信息传递通道,引导相关信息,抑制无关信息及不当行为,保持认知程序在执行多任务时的协调。中央执行器还会监督信息的整合以及协调各个负责短期信息维护的子系统。语音回路(PL)组件用于存储语音信息并通过不断刷新防止其受损,例如,只要不断重复一个7位数的电话号码它就可以被很好地储存<ref>{{Cite book|title = Variations in psychology|last = Weiten|first = W.|publisher = Wadsworth|year = 2013|location = New York|pages = 281–282|edition = 9}}</ref>。而视觉绘板组件则负责存储视觉和空间信息,例如构建、操控视觉图像及展现精神世界。视觉绘板还可进一步分为'''<font color="#ff8000">视觉子系统visual subsystem(处理形状、颜色和纹理等)和'''<font color="#ff8000">空间子系统spatial subsystem(处理位置)。
+
1974年,Baddeley和Hitch<ref name="Baddeley Hitch 1974">{{cite book | last1 = Baddeley    | first1 = Alan D.  | last2 = Hitch | first2 = Graham  | title = Working Memory | volume = 2 | editor = Gordon H. Bower | work = The psychology of learning and motivation | publisher = Academic Press | year = 1974 | pages = 47–89 | isbn = 978-0-12-543308-2 |oclc = 777285348 |doi= 10.1016/S0079-7421(08)60452-1}}</ref>提出了'''<font color="#ff8000">工作记忆多组件模型 Multicomponent Model of Working Memory</font>'''——该模型由三个组件构成:'''<font color="#ff8000">中央执行器 Central Executive</font>'''、'''<font color="#ff8000">语音回路(PL) Phonological Loop (PL)</font>'''、'''<font color="#ff8000">视觉绘板 Visuospatial Sketchpad</font>'''<ref name="Levin 2011">{{Cite book|title = Working Memory : Capacity, Developments and Improvement Techniques|last = Levin|first = E.S.|publisher = [[Nova Science Publishers, Inc.]]|year = 2011|location = New York}}</ref>。其中,中央执行器作为某种控制中心,负责疏通语音回路和视觉绘板之间的信息传递通道,引导相关信息,抑制无关信息及不当行为,保持认知程序在执行多任务时的协调。中央执行器还会监督信息的整合以及协调各个负责短期信息维护的子系统。语音回路(PL)组件用于存储语音信息并通过不断刷新防止其受损,例如,只要不断重复一个7位数的电话号码它就可以被很好地储存<ref>{{Cite book|title = Variations in psychology|last = Weiten|first = W.|publisher = Wadsworth|year = 2013|location = New York|pages = 281–282|edition = 9}}</ref>。而视觉绘板组件则负责存储视觉和空间信息,例如构建、操控视觉图像及展现精神世界。视觉绘板还可进一步分为'''<font color="#ff8000">视觉子系统visual subsystem</font>'''(处理形状、颜色和纹理等)和'''<font color="#ff8000">空间子系统spatial subsystem</font>'''(处理位置)。
      第73行: 第73行:  
{{Annotated image|caption=The central executive of working memory is retrieving memory from long-term memory.|image=WorkingMemory Label Free.jpg|width=320|height=179|image-width=320|image-left=0|image-top=0|annotations={{Annotation|130|15|Central Executive|font-weight=bold|font-size=10}}
 
{{Annotated image|caption=The central executive of working memory is retrieving memory from long-term memory.|image=WorkingMemory Label Free.jpg|width=320|height=179|image-width=320|image-left=0|image-top=0|annotations={{Annotation|130|15|Central Executive|font-weight=bold|font-size=10}}
   −
{{Annotation|10|160|Long-term Memory|font-weight=bold|font-size=10}}}}安德斯 · 埃里克森 Anders Ericsson 和沃尔特 · 金奇  Walter Kintsch <ref>{{cite journal|year=1995|title=Long-term working memory.|journal=Psychological Review|volume=102|issue=2|pages=211–245|doi=10.1037/0033-295X.102.2.211|pmid=7740089|author=Ericsson, K. A.|author2=Kintsch, W.|lastauthoramp=y}}</ref>引入了“'''<font color="#ff8000">长期工作记忆 Long-term Working Memory</font>'''”这一概念,即一组能让人从'''<font color="#ff8000">长期记忆 Long-term Memory</font>'''中无缝获取日常所需信息的“检索结构” 。也就是说,一部分长期记忆有效地发挥了工作记忆的作用。同样,考恩 Cowan 并不认为工作记忆完全独立于长期记忆的。工作记忆的表征是长期记忆表征的一个子集。工作记忆被处理成两个嵌入层次。第一层为被激活的长期记忆表征(可能会很多,毕竟理论上长期记忆表征的激活是没有上限的)。第二层叫做注意力'''<font color="#ff8000">焦点focus,焦点被认为是一种有限能力,可容纳四个激活的表征<ref name="Cowan 1995">{{cite book |author=Cowan, Nelson |title=Attention and memory: an integrated framework |publisher=Oxford University Press |location=Oxford [Oxfordshire] |year=1995 |isbn=978-0-19-506760-6 |oclc=30475237 }}{{Page needed|date=September 2010}}</ref>。
+
{{Annotation|10|160|Long-term Memory|font-weight=bold|font-size=10}}}}安德斯 · 埃里克森 Anders Ericsson 和沃尔特 · 金奇  Walter Kintsch <ref>{{cite journal|year=1995|title=Long-term working memory.|journal=Psychological Review|volume=102|issue=2|pages=211–245|doi=10.1037/0033-295X.102.2.211|pmid=7740089|author=Ericsson, K. A.|author2=Kintsch, W.|lastauthoramp=y}}</ref>引入了“'''<font color="#ff8000">长期工作记忆 Long-term Working Memory</font>'''”这一概念,即一组能让人从'''<font color="#ff8000">长期记忆 Long-term Memory</font>'''中无缝获取日常所需信息的“检索结构” 。也就是说,一部分长期记忆有效地发挥了工作记忆的作用。同样,考恩 Cowan 并不认为工作记忆完全独立于长期记忆的。工作记忆的表征是长期记忆表征的一个子集。工作记忆被处理成两个嵌入层次。第一层为被激活的长期记忆表征(可能会很多,毕竟理论上长期记忆表征的激活是没有上限的)。第二层叫做注意力'''<font color="#ff8000">焦点focus</font>''',焦点被认为是一种有限能力,可容纳四个激活的表征<ref name="Cowan 1995">{{cite book |author=Cowan, Nelson |title=Attention and memory: an integrated framework |publisher=Oxford University Press |location=Oxford [Oxfordshire] |year=1995 |isbn=978-0-19-506760-6 |oclc=30475237 }}{{Page needed|date=September 2010}}</ref>。
    
Oberauer has extended Cowan's model by adding a third component, a more narrow focus of attention that holds only one chunk at a time. The one-element focus is embedded in the four-element focus and serves to select a single chunk for processing. For example, four digits can be held in mind at the same time in Cowan's "focus of attention". When the individual wishes to perform a process on each of these digits—for example, adding the number two to each digit—separate processing is required for each digit since most individuals cannot perform several mathematical processes in parallel.<ref>{{Cite journal|title = Attention, working memory, and long-term memory in multimedia learning: A integrated perspective based on process models of working memory|last = Schweppe|first = J.|date = 2014|journal = Educational Psychology Review|doi = 10.1007/s10648-013-9242-2|issue = 2|volume = 26|page = 289}}</ref> Oberauer's attentional component selects one of the digits for processing and then shifts the attentional focus to the next digit, continuing until all digits have been processed.<ref>{{Cite journal|author=Oberauer K |title=Access to information in working memory: exploring the focus of attention |journal=Journal of Experimental Psychology: Learning, Memory, and Cognition |volume=28 |issue=3 |pages=411–21 |date=May 2002 |pmid=12018494 |doi=10.1037/0278-7393.28.3.411|citeseerx=10.1.1.163.4979 }}</ref>
 
Oberauer has extended Cowan's model by adding a third component, a more narrow focus of attention that holds only one chunk at a time. The one-element focus is embedded in the four-element focus and serves to select a single chunk for processing. For example, four digits can be held in mind at the same time in Cowan's "focus of attention". When the individual wishes to perform a process on each of these digits—for example, adding the number two to each digit—separate processing is required for each digit since most individuals cannot perform several mathematical processes in parallel.<ref>{{Cite journal|title = Attention, working memory, and long-term memory in multimedia learning: A integrated perspective based on process models of working memory|last = Schweppe|first = J.|date = 2014|journal = Educational Psychology Review|doi = 10.1007/s10648-013-9242-2|issue = 2|volume = 26|page = 289}}</ref> Oberauer's attentional component selects one of the digits for processing and then shifts the attentional focus to the next digit, continuing until all digits have been processed.<ref>{{Cite journal|author=Oberauer K |title=Access to information in working memory: exploring the focus of attention |journal=Journal of Experimental Psychology: Learning, Memory, and Cognition |volume=28 |issue=3 |pages=411–21 |date=May 2002 |pmid=12018494 |doi=10.1037/0278-7393.28.3.411|citeseerx=10.1.1.163.4979 }}</ref>
第106行: 第106行:       −
我们可以通过一系列任务来测量工作记忆的容量。其中一个方法是双任务范例,它将'''<font color="#ff8000">记忆广度测度 memory span measure</font>'''与'''<font color="#ff8000">并发处理任务concurrent processing task(有时称为“复杂规模”)结合起来。1980年,丹曼 Daneman 和 卡朋特 Carpenter 发明了该方法的第一个版本——“阅读广度”<ref>{{Cite journal|first1=Meredyth |last1=Daneman |first2=Patricia A. |last2=Carpenter |date=August 1980 |title=Individual differences in working memory and reading |journal=Journal of Verbal Learning & Verbal Behavior |volume=19 |issue=4 |pages=450–66 |doi=10.1016/S0022-5371(80)90312-6}}</ref>。受试者阅读大量的句子(通常2至6个),并努力记住每个句子的最后一个单词。阅读完后他们按照自己认为正确的顺序复述单词<ref>{{Cite journal|last1=Unsworth|first1=Nash|last2=Engle|first2=Randall W.|title=On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities.|journal=Psychological Bulletin|volume=133|issue=6|pages=1038–1066|doi=10.1037/0033-2909.133.6.1038|pmid=17967093|year=2007}}</ref><ref>{{Cite journal|last=Colom, R. Abad, F. J. Quiroga, M. A. Shih, P. C. Flores-Mendoza, C.|year=2008|title=Working memory and intelligence are highly related constructs, but why?|journal=Intelligence|volume=36|issue=6|pages=584–606|doi=10.1016/j.intell.2008.01.002}}</ref>。其他一些不具备双任务性质的任务同样也是测量工作记忆容量的好办法<ref>{{Cite journal|last2=Süss|first2=H.-M.|last3=Schulze|first3=R.|last4=Wilhelm|first4=O.|last5=Wittmann|first5=W.&nbsp;W.|date=December 2000|title=Working memory capacity—facets of a cognitive ability construct|journal=Personality and Individual Differences|volume=29|issue=6|pages=1017–45|doi=10.1016/S0191-8869(99)00251-2|first1=K.|last1=Oberauer}}</ref>。Daneman 和Carpenter 相信“存储”(维护)和加工的结合是测量工作记忆容量所必须的,现在我们知道工作记忆的容量既可以用没有额外处理组件的短时记忆任务来测量,也可以用不涉及信息维护的某些处理任务来衡量<ref>{{Cite journal|last=Oberauer, K. Süß, H.-M. Wilhelm, O. Wittmann, W. W.|year=2003|title=The multiple faces of working memory - storage, processing, supervision, and coordination|doi=10.1016/s0160-2896(02)00115-0|journal=Intelligence|volume=31|issue=2|pages=167–193|url=https://www.zora.uzh.ch/id/eprint/97155/1/intelligence.pdf}}</ref><ref>{{Cite journal|last=Chuderski|first=Adam|date=2013-09-25|title=The relational integration task explains fluid reasoning above and beyond other working memory tasks|journal=Memory & Cognition|language=en|volume=42|issue=3|pages=448–463|doi=10.3758/s13421-013-0366-x|issn=0090-502X|pmc=3969517|pmid=24222318}}</ref>。至于用于测量工作记忆容量的好的任务方案应当具备哪些特征,这仍是一个待研究的课题。
+
我们可以通过一系列任务来测量工作记忆的容量。其中一个方法是双任务范例,它将'''<font color="#ff8000">记忆广度测度 memory span measure</font>'''与'''<font color="#ff8000">并发处理任务concurrent processing task</font>'''(有时称为“复杂规模”)结合起来。1980年,丹曼 Daneman 和 卡朋特 Carpenter 发明了该方法的第一个版本——“阅读广度”<ref>{{Cite journal|first1=Meredyth |last1=Daneman |first2=Patricia A. |last2=Carpenter |date=August 1980 |title=Individual differences in working memory and reading |journal=Journal of Verbal Learning & Verbal Behavior |volume=19 |issue=4 |pages=450–66 |doi=10.1016/S0022-5371(80)90312-6}}</ref>。受试者阅读大量的句子(通常2至6个),并努力记住每个句子的最后一个单词。阅读完后他们按照自己认为正确的顺序复述单词<ref>{{Cite journal|last1=Unsworth|first1=Nash|last2=Engle|first2=Randall W.|title=On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities.|journal=Psychological Bulletin|volume=133|issue=6|pages=1038–1066|doi=10.1037/0033-2909.133.6.1038|pmid=17967093|year=2007}}</ref><ref>{{Cite journal|last=Colom, R. Abad, F. J. Quiroga, M. A. Shih, P. C. Flores-Mendoza, C.|year=2008|title=Working memory and intelligence are highly related constructs, but why?|journal=Intelligence|volume=36|issue=6|pages=584–606|doi=10.1016/j.intell.2008.01.002}}</ref>。其他一些不具备双任务性质的任务同样也是测量工作记忆容量的好办法<ref>{{Cite journal|last2=Süss|first2=H.-M.|last3=Schulze|first3=R.|last4=Wilhelm|first4=O.|last5=Wittmann|first5=W.&nbsp;W.|date=December 2000|title=Working memory capacity—facets of a cognitive ability construct|journal=Personality and Individual Differences|volume=29|issue=6|pages=1017–45|doi=10.1016/S0191-8869(99)00251-2|first1=K.|last1=Oberauer}}</ref>。Daneman 和Carpenter 相信“存储”(维护)和加工的结合是测量工作记忆容量所必须的,现在我们知道工作记忆的容量既可以用没有额外处理组件的短时记忆任务来测量,也可以用不涉及信息维护的某些处理任务来衡量<ref>{{Cite journal|last=Oberauer, K. Süß, H.-M. Wilhelm, O. Wittmann, W. W.|year=2003|title=The multiple faces of working memory - storage, processing, supervision, and coordination|doi=10.1016/s0160-2896(02)00115-0|journal=Intelligence|volume=31|issue=2|pages=167–193|url=https://www.zora.uzh.ch/id/eprint/97155/1/intelligence.pdf}}</ref><ref>{{Cite journal|last=Chuderski|first=Adam|date=2013-09-25|title=The relational integration task explains fluid reasoning above and beyond other working memory tasks|journal=Memory & Cognition|language=en|volume=42|issue=3|pages=448–463|doi=10.3758/s13421-013-0366-x|issn=0090-502X|pmc=3969517|pmid=24222318}}</ref>。至于用于测量工作记忆容量的好的任务方案应当具备哪些特征,这仍是一个待研究的课题。
      第113行: 第113行:  
Measures of working-memory capacity are strongly related to performance in other complex cognitive tasks, such as reading comprehension, problem solving, and with measures of intelligence quotient.
 
Measures of working-memory capacity are strongly related to performance in other complex cognitive tasks, such as reading comprehension, problem solving, and with measures of intelligence quotient.
   −
工作记忆容量的测量与其他复杂认知任务中的表现有密切联系,例如'''<font color="#ff8000">阅读理解 reading comprehension、'''<font color="#ff8000">问题解决 problem solving和'''<font color="#ff8000">智商测量intelligence quotient<ref>{{Cite journal|vauthors=Conway AR, Kane MJ, Engle RW |title=Working memory capacity and its relation to general intelligence |journal=Trends in Cognitive Sciences |volume=7 |issue=12 |pages=547–52 |date=December 2003 |pmid=14643371 |doi=10.1016/j.tics.2003.10.005|citeseerx=10.1.1.538.4967 }}</ref>。
+
工作记忆容量的测量与其他复杂认知任务中的表现有密切联系,例如'''<font color="#ff8000">阅读理解 reading comprehension</font>'''、'''<font color="#ff8000">问题解决 problem solving</font>'''和'''<font color="#ff8000">智商测量intelligence quotient</font>'''。<ref>{{Cite journal|vauthors=Conway AR, Kane MJ, Engle RW |title=Working memory capacity and its relation to general intelligence |journal=Trends in Cognitive Sciences |volume=7 |issue=12 |pages=547–52 |date=December 2003 |pmid=14643371 |doi=10.1016/j.tics.2003.10.005|citeseerx=10.1.1.538.4967 }}</ref>。
      第140行: 第140行:       −
关于'''<font color="#ff8000">容量极限capacity limit的性质有几种假设。一种观点认为其性质是一种有限认知资源池,作为激活记忆表征以及处理记忆表征的前提<ref name=":0">{{Cite journal|author=Just, M. A.|author2=Carpenter, P. A. |title=A capacity theory of comprehension: individual differences in working memory |journal=Psychological Review |volume=99 |issue=1 |pages=122–49 |date=January 1992 |pmid=1546114 |doi=10.1037/0033-295X.99.1.122|url=http://repository.cmu.edu/cgi/viewcontent.cgi?article=1730&context=psychology }}</ref>,另一种观点认为工作记忆若不反复刷新将会在几秒内衰退。又因为刷新速率是有限的,所以我们只能维持一定的信息量<ref>{{Cite journal|doi=10.3758/BF03198549|author=Towse, J. N.|author2=Hitch, G. J.|author3=Hutton, U.|title=On the interpretation of working memory span in adults |journal=Memory & Cognition |volume=28 |issue=3 |pages=341–8 |date=April 2000 |pmid=10881551|doi-access=free }}</ref>。还有观点认为容量极限是工作记忆中的表征互相干涉的结果<ref>{{Cite journal|vauthors=Waugh NC, Norman DA |title=Primary Memory |journal=Psychological Review |volume=72 |issue= 2|pages=89–104 |date=March 1965 |pmid=14282677 |doi=10.1037/h0021797}}</ref>。
+
关于'''<font color="#ff8000">容量极限capacity limit</font>'''的性质有几种假设。一种观点认为其性质是一种有限认知资源池,作为激活记忆表征以及处理记忆表征的前提<ref name=":0">{{Cite journal|author=Just, M. A.|author2=Carpenter, P. A. |title=A capacity theory of comprehension: individual differences in working memory |journal=Psychological Review |volume=99 |issue=1 |pages=122–49 |date=January 1992 |pmid=1546114 |doi=10.1037/0033-295X.99.1.122|url=http://repository.cmu.edu/cgi/viewcontent.cgi?article=1730&context=psychology }}</ref>,另一种观点认为工作记忆若不反复刷新将会在几秒内衰退。又因为刷新速率是有限的,所以我们只能维持一定的信息量<ref>{{Cite journal|doi=10.3758/BF03198549|author=Towse, J. N.|author2=Hitch, G. J.|author3=Hutton, U.|title=On the interpretation of working memory span in adults |journal=Memory & Cognition |volume=28 |issue=3 |pages=341–8 |date=April 2000 |pmid=10881551|doi-access=free }}</ref>。还有观点认为容量极限是工作记忆中的表征互相干涉的结果<ref>{{Cite journal|vauthors=Waugh NC, Norman DA |title=Primary Memory |journal=Psychological Review |volume=72 |issue= 2|pages=89–104 |date=March 1965 |pmid=14282677 |doi=10.1037/h0021797}}</ref>。
      第151行: 第151行:  
The assumption that the contents of short-term or working memory decay over time, unless decay is prevented by rehearsal, goes back to the early days of experimental research on short-term memory. It is also an important assumption in the multi-component theory of working memory. The most elaborate decay-based theory of working memory to date is the "time-based resource sharing model". This theory assumes that representations in working memory decay unless they are refreshed. Refreshing them requires an attentional mechanism that is also needed for any concurrent processing task. When there are small time intervals in which the processing task does not require attention, this time can be used to refresh memory traces. The theory therefore predicts that the amount of forgetting depends on the temporal density of attentional demands of the processing task—this density is called "cognitive load". The cognitive load depends on two variables, the rate at which the processing task requires individual steps to be carried out, and the duration of each step. For example, if the processing task consists of adding digits, then having to add another digit every half second places a higher cognitive load on the system than having to add another digit every two seconds. In a series of experiments, Barrouillet and colleagues have shown that memory for lists of letters depends neither on the number of processing steps nor the total time of processing but on cognitive load.
 
The assumption that the contents of short-term or working memory decay over time, unless decay is prevented by rehearsal, goes back to the early days of experimental research on short-term memory. It is also an important assumption in the multi-component theory of working memory. The most elaborate decay-based theory of working memory to date is the "time-based resource sharing model". This theory assumes that representations in working memory decay unless they are refreshed. Refreshing them requires an attentional mechanism that is also needed for any concurrent processing task. When there are small time intervals in which the processing task does not require attention, this time can be used to refresh memory traces. The theory therefore predicts that the amount of forgetting depends on the temporal density of attentional demands of the processing task—this density is called "cognitive load". The cognitive load depends on two variables, the rate at which the processing task requires individual steps to be carried out, and the duration of each step. For example, if the processing task consists of adding digits, then having to add another digit every half second places a higher cognitive load on the system than having to add another digit every two seconds. In a series of experiments, Barrouillet and colleagues have shown that memory for lists of letters depends neither on the number of processing steps nor the total time of processing but on cognitive load.
   −
该理论假设短期记忆或工作记忆的内容会随着时间的推移而'''<font color="#ff8000">衰退 decay</font>''',这种衰退只能通过不断刷新来遏制。这种理论来自短期记忆的早期研究<ref>{{Cite journal|last=Brown, J.|year=1958|title=Some tests of the decay theory of immediate memory|journal=Quarterly Journal of Experimental Psychology|volume=10|pages=12–21|doi=10.1080/17470215808416249}}</ref><ref>{{Cite journal|author1=Peterson, L. R. |author2=Peterson, M. J.|year=1959|title=Short-term retention of individual verbal items|journal=Journal of Experimental Psychology|volume=58|issue=3|pages=193–198|doi=10.1037/h0049234|pmid=14432252|citeseerx=10.1.1.227.1807}}</ref>。它同样是工作记忆多元理论中的一个重要假设<ref>{{Cite book|title=Working memory|author1=Baddeley, A. D.|publisher=Clarendon|year=1986|location=Oxford}}</ref>。迄今为止,基于衰减假设的最详尽的工作记忆理论是“'''<font color="#ff8000">基于时间的资源共享模型 time-based resource sharing model” <ref>{{Cite journal|date=March 2004|title=Time constraints and resource sharing in adults' working memory spans|journal=Journal of Experimental Psychology: General|volume=133|issue=1|pages=83–100|doi=10.1037/0096-3445.133.1.83|pmid=14979753|vauthors=Barrouillet P, Bernardin S, Camos V|citeseerx=10.1.1.379.9208}}</ref>。该理论假设工作记忆中的表征不断衰退,需要持续刷新来维持。而刷新需要注意力机制——对于任何平行任务都是必需的——的保障。当任务进程中存在不需要注意力的微小时间间隔时,刷新记忆路径的任务可以在此时完成。因此,该理论推测遗忘量取决于任务进程所需即时注意力的密度,这种密度叫做“认知负荷”。认知负荷取决于两个变量,一是任务进程中各个步骤执行的速率,二是每个步骤的持续时间。例如,如果处理的任务内容是数字添加,那么每半秒添加一个数字会比每两秒添加一个数字给系统带来的认知负荷更大。在一系列的实验中,巴鲁耶 Barrouillet 及其同事证明字母列表的记忆并不取决于处理步骤的数量或者处理的总时间,而是取决于认知负荷<ref>{{citation|title=Time and cognitive load in working memory|date=May 2007|journal=J Exp Psychol Learn Mem Cogn|vauthors=Barrouillet P, Bernardin S, Portrat S, Vergauwe E, Camos V|volume=33|issue=3|pages=570–585|doi=10.1037/0278-7393.33.3.570|pmid=17470006|url=https://archive-ouverte.unige.ch/unige:88299}}</ref>。
+
该理论假设短期记忆或工作记忆的内容会随着时间的推移而'''<font color="#ff8000">衰退 decay</font>''',这种衰退只能通过不断刷新来遏制。这种理论来自短期记忆的早期研究<ref>{{Cite journal|last=Brown, J.|year=1958|title=Some tests of the decay theory of immediate memory|journal=Quarterly Journal of Experimental Psychology|volume=10|pages=12–21|doi=10.1080/17470215808416249}}</ref><ref>{{Cite journal|author1=Peterson, L. R. |author2=Peterson, M. J.|year=1959|title=Short-term retention of individual verbal items|journal=Journal of Experimental Psychology|volume=58|issue=3|pages=193–198|doi=10.1037/h0049234|pmid=14432252|citeseerx=10.1.1.227.1807}}</ref>。它同样是工作记忆多元理论中的一个重要假设<ref>{{Cite book|title=Working memory|author1=Baddeley, A. D.|publisher=Clarendon|year=1986|location=Oxford}}</ref>。迄今为止,基于衰减假设的最详尽的工作记忆理论是“'''<font color="#ff8000">基于时间的资源共享模型 time-based resource sharing model” </font>'''<ref>{{Cite journal|date=March 2004|title=Time constraints and resource sharing in adults' working memory spans|journal=Journal of Experimental Psychology: General|volume=133|issue=1|pages=83–100|doi=10.1037/0096-3445.133.1.83|pmid=14979753|vauthors=Barrouillet P, Bernardin S, Camos V|citeseerx=10.1.1.379.9208}}</ref>。该理论假设工作记忆中的表征不断衰退,需要持续刷新来维持。而刷新需要注意力机制——对于任何平行任务都是必需的——的保障。当任务进程中存在不需要注意力的微小时间间隔时,刷新记忆路径的任务可以在此时完成。因此,该理论推测遗忘量取决于任务进程所需即时注意力的密度,这种密度叫做“认知负荷”。认知负荷取决于两个变量,一是任务进程中各个步骤执行的速率,二是每个步骤的持续时间。例如,如果处理的任务内容是数字添加,那么每半秒添加一个数字会比每两秒添加一个数字给系统带来的认知负荷更大。在一系列的实验中,巴鲁耶 Barrouillet 及其同事证明字母列表的记忆并不取决于处理步骤的数量或者处理的总时间,而是取决于认知负荷<ref>{{citation|title=Time and cognitive load in working memory|date=May 2007|journal=J Exp Psychol Learn Mem Cogn|vauthors=Barrouillet P, Bernardin S, Portrat S, Vergauwe E, Camos V|volume=33|issue=3|pages=570–585|doi=10.1037/0278-7393.33.3.570|pmid=17470006|url=https://archive-ouverte.unige.ch/unige:88299}}</ref>。
    
==== 资源理论 Resource theories====
 
==== 资源理论 Resource theories====
第161行: 第161行:  
Resource theories assume that the capacity of working memory is a limited resource that must be shared between all representations that need to be maintained in working memory simultaneously. Some resource theorists also assume that maintenance and concurrent processing share the same resource;
 
Resource theories assume that the capacity of working memory is a limited resource that must be shared between all representations that need to be maintained in working memory simultaneously. Some resource theorists also assume that maintenance and concurrent processing share the same resource;
   −
'''<font color="#ff8000">资源理论 resource theories认为工作记忆容量是一种由储存于工作记忆中的全部表征所共享的有限资源<ref>{{Cite journal|last1=Ma|first1=W. J.|author2=Husain, M.|author3=Bays, P. M.|year=2014|title=Changing concepts of working memory|journal=Nature Reviews Neuroscience|volume=17|issue=3|pages=347–356|doi=10.1038/nn.3655|pmid=24569831|pmc=4159388}}</ref>。一些资源理论学者同时还假设维护和并行处理会占用同样的资源;
+
'''<font color="#ff8000">资源理论 resource theories</font>'''认为工作记忆容量是一种由储存于工作记忆中的全部表征所共享的有限资源<ref>{{Cite journal|last1=Ma|first1=W. J.|author2=Husain, M.|author3=Bays, P. M.|year=2014|title=Changing concepts of working memory|journal=Nature Reviews Neuroscience|volume=17|issue=3|pages=347–356|doi=10.1038/nn.3655|pmid=24569831|pmc=4159388}}</ref>。一些资源理论学者同时还假设维护和并行处理会占用同样的资源;
      第172行: 第172行:  
Several forms of interference have been discussed by theorists. One of the oldest ideas is that new items simply replace older ones in working memory. Another form of interference is retrieval competition. For example, when the task is to remember a list of 7 words in their order, we need to start recall with the first word. While trying to retrieve the first word, the second word, which is represented in proximity, is accidentally retrieved as well, and the two compete for being recalled. Errors in serial recall tasks are often confusions of neighboring items on a memory list (so-called transpositions), showing that retrieval competition plays a role in limiting our ability to recall lists in order, and probably also in other working memory tasks. A third form of interference is the distortion of representations by superposition: When multiple representations are added on top of each other, each of them is blurred by the presence of all the others. A fourth form of interference assumed by some authors is feature overwriting. The idea is that each word, digit, or other item in working memory is represented as a bundle of features, and when two items share some features, one of them steals the features from the other. The more items are held in working memory, and the more their features overlap, the more each of them will be degraded by the loss of some features.
 
Several forms of interference have been discussed by theorists. One of the oldest ideas is that new items simply replace older ones in working memory. Another form of interference is retrieval competition. For example, when the task is to remember a list of 7 words in their order, we need to start recall with the first word. While trying to retrieve the first word, the second word, which is represented in proximity, is accidentally retrieved as well, and the two compete for being recalled. Errors in serial recall tasks are often confusions of neighboring items on a memory list (so-called transpositions), showing that retrieval competition plays a role in limiting our ability to recall lists in order, and probably also in other working memory tasks. A third form of interference is the distortion of representations by superposition: When multiple representations are added on top of each other, each of them is blurred by the presence of all the others. A fourth form of interference assumed by some authors is feature overwriting. The idea is that each word, digit, or other item in working memory is represented as a bundle of features, and when two items share some features, one of them steals the features from the other. The more items are held in working memory, and the more their features overlap, the more each of them will be degraded by the loss of some features.
   −
理论家们讨论过多种形式的干涉。最初的观点之一是,新事物只是单纯地取代了工作记忆中的旧事物。另一种干涉形式是'''<font color="#ff8000">检索竞争 retrieval competition。例如当任务是按照一定顺序记住7个单词时,我们需要从第一个单词开始回忆。而在试图检索第一个单词时,我们往往会意外地检索到第二个单词,至于我们最终会回忆起哪个单词,这就得看它们竞争的结果了。回忆中出现的错误通常表现为记忆列表中相邻项目的混淆(即所谓的换位) ,这表明检索竞争限制了我们按照正确顺序回忆列表的能力,这种限制也可能发生在其他工作记忆任务中。另一种形式的干涉是叠表征的变形: 当多重表征叠加在一起时,每一表征都因其他表征的相互作用而模糊不清<ref>{{Cite journal|last1=Oberauer|first1=Klaus|last2=Lewandowsky|first2=Stephan|last3=Farrell|first3=Simon|last4=Jarrold|first4=Christopher|last5=Greaves|first5=Martin|date=2012-06-20|title=Modeling working memory: An interference model of complex span|journal=Psychonomic Bulletin & Review|language=en|volume=19|issue=5|pages=779–819|doi=10.3758/s13423-012-0272-4|pmid=22715024|issn=1069-9384|url=http://doc.rero.ch/record/320568/files/13423_2012_Article_272.pdf}}</ref>。一些人认为特征覆盖也是一种干涉形式<ref>{{Cite journal|doi=10.1016/j.jml.2006.08.009 |title=A formal model of capacity limits in working memory |date=November 2006 |first1=Klaus |last1=Oberauer |first2=Reinhold |last2=Kliegl |journal=Journal of Memory and Language |volume=55 |issue=4 |pages=601–26|doi-access=free }}</ref><ref>{{Cite journal|doi=10.1007/s00221-010-2501-2 |pmid=21132280 |title=Distractor frequency influences performance in vibrotactile working memory |year=2011 |first1=T. |last1=Bancroft |first2=P. |last2=Servos |journal=Experimental Brain Research |volume=208 |issue=4 |pages=529–32}}</ref>。该观点认为工作记忆中的每个单词、数字或其他项目都被表现为一系列特征,当两个项目共享某些特征时,其中一个就会窃取另一个的特征。工作记忆中保存的条目越多则重叠的特征越多,因此每个条目丢失的特征越多,减损也就越多。
+
理论家们讨论过多种形式的干涉。最初的观点之一是,新事物只是单纯地取代了工作记忆中的旧事物。另一种干涉形式是'''<font color="#ff8000">检索竞争 retrieval competition</font>'''。例如当任务是按照一定顺序记住7个单词时,我们需要从第一个单词开始回忆。而在试图检索第一个单词时,我们往往会意外地检索到第二个单词,至于我们最终会回忆起哪个单词,这就得看它们竞争的结果了。回忆中出现的错误通常表现为记忆列表中相邻项目的混淆(即所谓的换位) ,这表明检索竞争限制了我们按照正确顺序回忆列表的能力,这种限制也可能发生在其他工作记忆任务中。另一种形式的干涉是叠表征的变形: 当多重表征叠加在一起时,每一表征都因其他表征的相互作用而模糊不清<ref>{{Cite journal|last1=Oberauer|first1=Klaus|last2=Lewandowsky|first2=Stephan|last3=Farrell|first3=Simon|last4=Jarrold|first4=Christopher|last5=Greaves|first5=Martin|date=2012-06-20|title=Modeling working memory: An interference model of complex span|journal=Psychonomic Bulletin & Review|language=en|volume=19|issue=5|pages=779–819|doi=10.3758/s13423-012-0272-4|pmid=22715024|issn=1069-9384|url=http://doc.rero.ch/record/320568/files/13423_2012_Article_272.pdf}}</ref>。一些人认为特征覆盖也是一种干涉形式<ref>{{Cite journal|doi=10.1016/j.jml.2006.08.009 |title=A formal model of capacity limits in working memory |date=November 2006 |first1=Klaus |last1=Oberauer |first2=Reinhold |last2=Kliegl |journal=Journal of Memory and Language |volume=55 |issue=4 |pages=601–26|doi-access=free }}</ref><ref>{{Cite journal|doi=10.1007/s00221-010-2501-2 |pmid=21132280 |title=Distractor frequency influences performance in vibrotactile working memory |year=2011 |first1=T. |last1=Bancroft |first2=P. |last2=Servos |journal=Experimental Brain Research |volume=208 |issue=4 |pages=529–32}}</ref>。该观点认为工作记忆中的每个单词、数字或其他项目都被表现为一系列特征,当两个项目共享某些特征时,其中一个就会窃取另一个的特征。工作记忆中保存的条目越多则重叠的特征越多,因此每个条目丢失的特征越多,减损也就越多。
      第213行: 第213行:  
Working memory is among the cognitive functions most sensitive to decline in old age. Several explanations have been offered for this decline in psychology. One is the processing speed theory of cognitive aging by Tim Salthouse. Drawing on the finding of general slowing of cognitive processes as people grow older, Salthouse argues that slower processing leaves more time for working-memory contents to decay, thus reducing effective capacity. However, the decline of working-memory capacity cannot be entirely attributed to slowing because capacity declines more in old age than speed. Another proposal is the inhibition hypothesis advanced by Lynn Hasher and Rose Zacks. This theory assumes a general deficit in old age in the ability to inhibit irrelevant, or no-longer relevant, information. Therefore, working memory tends to be cluttered with irrelevant contents that reduce the effective capacity for relevant content. The assumption of an inhibition deficit in old age has received much empirical support but, so far, it is not clear whether the decline in inhibitory ability fully explains the decline of working-memory capacity. An explanation on the neural level of the decline of working memory and other cognitive functions in old age has been proposed by West. She argued that working memory depends to a large degree on the pre-frontal cortex, which deteriorates more than other brain regions as we grow old.  Age related decline in working memory can be briefly reversed using low intensity transcranial stimulation, synchronizing rhythms in bilateral frontal and left temporal lobe areas.
 
Working memory is among the cognitive functions most sensitive to decline in old age. Several explanations have been offered for this decline in psychology. One is the processing speed theory of cognitive aging by Tim Salthouse. Drawing on the finding of general slowing of cognitive processes as people grow older, Salthouse argues that slower processing leaves more time for working-memory contents to decay, thus reducing effective capacity. However, the decline of working-memory capacity cannot be entirely attributed to slowing because capacity declines more in old age than speed. Another proposal is the inhibition hypothesis advanced by Lynn Hasher and Rose Zacks. This theory assumes a general deficit in old age in the ability to inhibit irrelevant, or no-longer relevant, information. Therefore, working memory tends to be cluttered with irrelevant contents that reduce the effective capacity for relevant content. The assumption of an inhibition deficit in old age has received much empirical support but, so far, it is not clear whether the decline in inhibitory ability fully explains the decline of working-memory capacity. An explanation on the neural level of the decline of working memory and other cognitive functions in old age has been proposed by West. She argued that working memory depends to a large degree on the pre-frontal cortex, which deteriorates more than other brain regions as we grow old.  Age related decline in working memory can be briefly reversed using low intensity transcranial stimulation, synchronizing rhythms in bilateral frontal and left temporal lobe areas.
   −
人进入老年期后,一系列认知功能都会有所衰退,其中最严重的就是工作记忆<ref name="Hertzog 2003">{{cite journal |vauthors=Hertzog C, Dixon RA, Hultsch DF, MacDonald SW |title=Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory? |journal=Psychol Aging |volume=18 |issue=4 |pages=755–69 |date=December 2003 |pmid=14692862 |doi=10.1037/0882-7974.18.4.755 }}</ref><ref name="Park, D. C. 2002">{{cite journal |vauthors=Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK |title=Models of visuospatial and verbal memory across the adult life span |journal=Psychol Aging |volume=17 |issue=2 |pages=299–320 |date=June 2002 |pmid=12061414 |doi= 10.1037/0882-7974.17.2.299 }}</ref>。心理学对此有几种解释。一个是提姆 · 萨尔特豪斯 Tim Salthouse 提出的关于认知老化的'''<font color="#ff8000">加工速度理论 processing speed theory<ref>{{cite journal | doi = 10.1037/0033-295X.103.3.403 | last1 = Salthouse | first1 = T. A. | year = 1996 | title = The processing speed theory of adult age differences in cognition | journal = Psychological Review | volume = 103 | issue = 3| pages = 403–428 | pmid = 8759042 | citeseerx = 10.1.1.464.585 }}</ref>。普遍而言,人的认知过程随着年龄增长而滞缓。所以Salthouse 认为工作记忆会有更多的衰减机会,从而使其有效容量降低。然而,工作记忆容量的下降不能完全归因于此,因为老年时期记忆容量的下降速度比速度本身下降的更快<ref name="Park, D. C. 2002" /><ref>{{cite journal | doi = 10.1016/0010-0277(95)00689-3 | last1 = Mayr | first1 = U. | last2 = Kliegl | first2 = R. | last3 = Krampe | first3 = R. T. | year = 1996 | title = Sequential and coordinative processing dynamics in figural transformation across the life span | journal = Cognition | volume = 59 | issue = 1| pages = 61–90 | pmid = 8857471 }}</ref>。另一个是琳恩·哈什尔 Lynn Hasher 和 罗丝·扎克 Rose Zacks 提出的'''<font color="#ff8000">抑制假说 inhibition hypothesis<ref>Hasher, L., & Zacks, R.&nbsp;T. (1988). Working memory, comprehension, and aging: A review and new view. In G. H. Bower (Ed.), ''The psychology of learning and motivation'', ''Vol. 22'', (pp. 193–225). New York: Academic Press.</ref>。该理论假设老年人排除不相关信息的能力不足。因此,工作记忆往往会被不相关内容所干扰,从而降低记忆内容的有效容量。老年抑制能力缺失的假设得到了大量研究的支持<ref>Hasher, L., Zacks, R.&nbsp;T., & May, C.&nbsp;P. (1999). Inhibitory control, circadian arousal, and age. In D.&nbsp;Gopher & A.&nbsp;Koriat (Eds.), ''Attention and Performance'' (pp. 653–675). Cambridge, MA: MIT Press.</ref>,但抑制能力的下降能否完全解释为何工作记忆能力下降,目前为止还不清楚。韦斯特  West对老年工作记忆及其他认知功能的衰退则提出了一种神经层面的解释<ref>{{cite journal | doi = 10.1037/0033-2909.120.2.272 | last1 = West | first1 = R.&nbsp;L. | year = 1996 | title = An application of prefrontal cortex function theory to cognitive aging | journal = Psychological Bulletin | volume = 120 | issue = 2| pages = 272–292 | pmid = 8831298 }}</ref>。她认为前额叶皮层对工作记忆有着很大的影响,而随着年龄的增长,前额叶皮与其他大脑区域相比更容易衰退。由衰老引发的工作记忆衰退可通过低强度经颅刺激同步化额叶或左侧颞叶节律来短期逆转<ref>{{Cite news|url=https://www.theguardian.com/science/2019/apr/08/scientists-use-electrical-pulses-reverse-memory-decline-ageing|title=Scientists reverse memory decline using electrical pulses|last=Devlin, H.|date=2019-04-08|work=The Guardian|access-date=2019-04-09|language=en-GB|issn=0261-3077}}</ref>。
+
人进入老年期后,一系列认知功能都会有所衰退,其中最严重的就是工作记忆<ref name="Hertzog 2003">{{cite journal |vauthors=Hertzog C, Dixon RA, Hultsch DF, MacDonald SW |title=Latent change models of adult cognition: are changes in processing speed and working memory associated with changes in episodic memory? |journal=Psychol Aging |volume=18 |issue=4 |pages=755–69 |date=December 2003 |pmid=14692862 |doi=10.1037/0882-7974.18.4.755 }}</ref><ref name="Park, D. C. 2002">{{cite journal |vauthors=Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK |title=Models of visuospatial and verbal memory across the adult life span |journal=Psychol Aging |volume=17 |issue=2 |pages=299–320 |date=June 2002 |pmid=12061414 |doi= 10.1037/0882-7974.17.2.299 }}</ref>。心理学对此有几种解释。一个是提姆 · 萨尔特豪斯 Tim Salthouse 提出的关于认知老化的'''<font color="#ff8000">加工速度理论 processing speed theory</font>'''<ref>{{cite journal | doi = 10.1037/0033-295X.103.3.403 | last1 = Salthouse | first1 = T. A. | year = 1996 | title = The processing speed theory of adult age differences in cognition | journal = Psychological Review | volume = 103 | issue = 3| pages = 403–428 | pmid = 8759042 | citeseerx = 10.1.1.464.585 }}</ref>。普遍而言,人的认知过程随着年龄增长而滞缓。所以Salthouse 认为工作记忆会有更多的衰减机会,从而使其有效容量降低。然而,工作记忆容量的下降不能完全归因于此,因为老年时期记忆容量的下降速度比速度本身下降的更快<ref name="Park, D. C. 2002" /><ref>{{cite journal | doi = 10.1016/0010-0277(95)00689-3 | last1 = Mayr | first1 = U. | last2 = Kliegl | first2 = R. | last3 = Krampe | first3 = R. T. | year = 1996 | title = Sequential and coordinative processing dynamics in figural transformation across the life span | journal = Cognition | volume = 59 | issue = 1| pages = 61–90 | pmid = 8857471 }}</ref>。另一个是琳恩·哈什尔 Lynn Hasher 和 罗丝·扎克 Rose Zacks 提出的'''<font color="#ff8000">抑制假说 inhibition hypothesis</font>'''<ref>Hasher, L., & Zacks, R.&nbsp;T. (1988). Working memory, comprehension, and aging: A review and new view. In G. H. Bower (Ed.), ''The psychology of learning and motivation'', ''Vol. 22'', (pp. 193–225). New York: Academic Press.</ref>。该理论假设老年人排除不相关信息的能力不足。因此,工作记忆往往会被不相关内容所干扰,从而降低记忆内容的有效容量。老年抑制能力缺失的假设得到了大量研究的支持<ref>Hasher, L., Zacks, R.&nbsp;T., & May, C.&nbsp;P. (1999). Inhibitory control, circadian arousal, and age. In D.&nbsp;Gopher & A.&nbsp;Koriat (Eds.), ''Attention and Performance'' (pp. 653–675). Cambridge, MA: MIT Press.</ref>,但抑制能力的下降能否完全解释为何工作记忆能力下降,目前为止还不清楚。韦斯特  West对老年工作记忆及其他认知功能的衰退则提出了一种神经层面的解释<ref>{{cite journal | doi = 10.1037/0033-2909.120.2.272 | last1 = West | first1 = R.&nbsp;L. | year = 1996 | title = An application of prefrontal cortex function theory to cognitive aging | journal = Psychological Bulletin | volume = 120 | issue = 2| pages = 272–292 | pmid = 8831298 }}</ref>。她认为前额叶皮层对工作记忆有着很大的影响,而随着年龄的增长,前额叶皮与其他大脑区域相比更容易衰退。由衰老引发的工作记忆衰退可通过低强度经颅刺激同步化额叶或左侧颞叶节律来短期逆转<ref>{{Cite news|url=https://www.theguardian.com/science/2019/apr/08/scientists-use-electrical-pulses-reverse-memory-decline-ageing|title=Scientists reverse memory decline using electrical pulses|last=Devlin, H.|date=2019-04-08|work=The Guardian|access-date=2019-04-09|language=en-GB|issn=0261-3077}}</ref>。
    
== 训练 Training ==
 
== 训练 Training ==
第242行: 第242行:  
The first insights into the neuronal and neurotransmitter basis of working memory came from animal research. The work of Jacobsen and Fulton in the 1930s first showed that lesions to the PFC impaired spatial working memory performance in monkeys. The later work of Joaquin Fuster recorded the electrical activity of neurons in the PFC of monkeys while they were doing a delayed matching task. In that task, the monkey sees how the experimenter places a bit of food under one of two identical-looking cups. A shutter is then lowered for a variable delay period, screening off the cups from the monkey's view. After the delay, the shutter opens and the monkey is allowed to retrieve the food from under the cups. Successful retrieval in the first attempt – something the animal can achieve after some training on the task – requires holding the location of the food in memory over the delay period. Fuster found neurons in the PFC that fired mostly during the delay period, suggesting that they were involved in representing the food location while it was invisible. Later research has shown similar delay-active neurons also in the posterior parietal cortex, the thalamus, the caudate, and the globus pallidus. The work of Goldman-Rakic and others showed that principal sulcal, dorsolateral PFC interconnects with all of these brain regions, and that neuronal microcircuits within PFC are able to maintain information in working memory through recurrent excitatory glutamate networks of pyramidal cells that continue to fire throughout the delay period. These circuits are tuned by lateral inhibition from GABAergic interneurons. The neuromodulatory arousal systems markedly alter PFC working memory function; for example, either too little or too much dopamine or norepinephrine impairs PFC network firing and working memory performance.
 
The first insights into the neuronal and neurotransmitter basis of working memory came from animal research. The work of Jacobsen and Fulton in the 1930s first showed that lesions to the PFC impaired spatial working memory performance in monkeys. The later work of Joaquin Fuster recorded the electrical activity of neurons in the PFC of monkeys while they were doing a delayed matching task. In that task, the monkey sees how the experimenter places a bit of food under one of two identical-looking cups. A shutter is then lowered for a variable delay period, screening off the cups from the monkey's view. After the delay, the shutter opens and the monkey is allowed to retrieve the food from under the cups. Successful retrieval in the first attempt – something the animal can achieve after some training on the task – requires holding the location of the food in memory over the delay period. Fuster found neurons in the PFC that fired mostly during the delay period, suggesting that they were involved in representing the food location while it was invisible. Later research has shown similar delay-active neurons also in the posterior parietal cortex, the thalamus, the caudate, and the globus pallidus. The work of Goldman-Rakic and others showed that principal sulcal, dorsolateral PFC interconnects with all of these brain regions, and that neuronal microcircuits within PFC are able to maintain information in working memory through recurrent excitatory glutamate networks of pyramidal cells that continue to fire throughout the delay period. These circuits are tuned by lateral inhibition from GABAergic interneurons. The neuromodulatory arousal systems markedly alter PFC working memory function; for example, either too little or too much dopamine or norepinephrine impairs PFC network firing and working memory performance.
   −
最初,关于工作记忆神经元和神经递质基础的见解来自于对动物的研究。20世纪30年代,雅各布森 Jacobsen <ref>{{Cite journal|author=Jacobsen CF|title= Studies of cerebral function in primates |journal=Comparative Psychology Monographs |volume=13 |issue=3 |pages=1–68 |year=1938 |oclc=250695441 }}</ref>和富尔顿 Fulton在研究中首次证明了猴子的空间工作记忆能力会因PFC而减损。华金 · 福斯特 Joaquin Fuster <ref>{{Cite journal|author=Fuster JM |title=Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory |journal=Journal of Neurophysiology |volume=36 |issue=1 |pages=61–78 |date=January 1973 |pmid=4196203 |doi=10.1152/jn.1973.36.1.61 }}</ref>的后续工作记录了猴子在完成延迟匹配任务时 PFC 中神经元的电活动。在该任务中有两个相同的杯子,猴子看到实验人员把一点食物放在其中一个下面。然后一个挡板降下,暂时挡住猴子看向杯子的视线(延迟变量)。之后挡板打开,允许猴子从杯子下面取出食物。在第一次尝试中它成功地得到了食物——这是动物经过特定训练后应该能够完成的任务——要求动物在延迟期内维持对食物位置的记忆。Fuster发现在延迟期间,PFC中的大部分神经元被激活了,表明它们参与了在隔离期间对食物位置的记忆维持。后来的研究发现后'''<font color="#ff8000">顶叶皮层posterior parietal cortex、'''<font color="#ff8000">丘脑thalamus、'''<font color="#ff8000">尾状核caudate和'''<font color="#ff8000">苍白球globus pallidus也有类似的延迟活动神经元。<ref>{{Cite journal|vauthors=Ashby FG, Ell SW, Valentin VV, Casale MB |title=FROST: a distributed neurocomputational model of working memory maintenance |journal=Journal of Cognitive Neuroscience |volume=17 |issue=11 |pages=1728–43 |date=November 2005 |pmid=16269109 |doi=10.1162/089892905774589271|citeseerx=10.1.1.456.7179 }}</ref>高德马・拉齐克 Goldman-Rakic 等人的研究表明,脊髓背外侧的PFC与这些大脑区域相互连接,PFC内的神经元微回路凭借反复兴奋的锥体细胞谷氨酸网络来维持工作记忆中的信息——这些神经元网络在延迟期间是持续激活的<ref>{{Cite journal|author=Goldman-Rakic PS|title= Cellular basis of working memory |journal=Neuron |volume=14 |issue= 3 |pages=447–485 |year=1995 | pmid = 7695894 | doi = 10.1016/0896-6273(95)90304-6 }}</ref>。这些回路由GABA能中间神经元的侧抑制调节<ref>{{Cite journal|vauthors=Rao SG, Williams GV, Goldman-Rakic PS |title= Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory |journal=Journal of Neuroscience |volume=20 |pages=485–494 |year=2000|pmid=10627624 |pmc= 6774140 |issue=1|doi= 10.1523/JNEUROSCI.20-01-00485.2000 }}</ref>。神经调节性唤起系统对PFC工作记忆功能产生了显著影响; 例如,过多或过少的多巴胺或去甲肾上腺素会减损PFC神经网络放电功能<ref>{{Cite journal|doi=10.1016/j.tics.2010.05.003|author1=Arnsten AFT |author2=Paspalas CD |author3=Gamo NJ |author4=Y. Y |author5=Wang M |title= Dynamic Network Connectivity: A new form of neuroplasticity|journal=Trends in Cognitive Sciences|volume=14 |pages=365–375 |year=2010|issue=8|pmid=20554470|pmc=2914830}}</ref>和工作记忆表现<ref>{{Cite journal|doi=10.1146/annurev.neuro.051508.135535|vauthors=Robbins TW, Arnsten AF |title= The neuropsychopharmacology of fronto-executive function: monoaminergic modulation |journal=Annu Rev Neurosci|volume=32 |pages=267–287 |year=2009|pmid=19555290|pmc=2863127}}</ref>。
+
最初,关于工作记忆神经元和神经递质基础的见解来自于对动物的研究。20世纪30年代,雅各布森 Jacobsen <ref>{{Cite journal|author=Jacobsen CF|title= Studies of cerebral function in primates |journal=Comparative Psychology Monographs |volume=13 |issue=3 |pages=1–68 |year=1938 |oclc=250695441 }}</ref>和富尔顿 Fulton在研究中首次证明了猴子的空间工作记忆能力会因PFC而减损。华金 · 福斯特 Joaquin Fuster <ref>{{Cite journal|author=Fuster JM |title=Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory |journal=Journal of Neurophysiology |volume=36 |issue=1 |pages=61–78 |date=January 1973 |pmid=4196203 |doi=10.1152/jn.1973.36.1.61 }}</ref>的后续工作记录了猴子在完成延迟匹配任务时 PFC 中神经元的电活动。在该任务中有两个相同的杯子,猴子看到实验人员把一点食物放在其中一个下面。然后一个挡板降下,暂时挡住猴子看向杯子的视线(延迟变量)。之后挡板打开,允许猴子从杯子下面取出食物。在第一次尝试中它成功地得到了食物——这是动物经过特定训练后应该能够完成的任务——要求动物在延迟期内维持对食物位置的记忆。Fuster发现在延迟期间,PFC中的大部分神经元被激活了,表明它们参与了在隔离期间对食物位置的记忆维持。后来的研究发现后'''<font color="#ff8000">顶叶皮层posterior parietal cortex</font>'''、'''<font color="#ff8000">丘脑thalamus</font>'''、'''<font color="#ff8000">尾状核caudate</font>'''和'''<font color="#ff8000">苍白球globus pallidus</font>'''也有类似的延迟活动神经元。<ref>{{Cite journal|vauthors=Ashby FG, Ell SW, Valentin VV, Casale MB |title=FROST: a distributed neurocomputational model of working memory maintenance |journal=Journal of Cognitive Neuroscience |volume=17 |issue=11 |pages=1728–43 |date=November 2005 |pmid=16269109 |doi=10.1162/089892905774589271|citeseerx=10.1.1.456.7179 }}</ref>高德马・拉齐克 Goldman-Rakic 等人的研究表明,脊髓背外侧的PFC与这些大脑区域相互连接,PFC内的神经元微回路凭借反复兴奋的锥体细胞谷氨酸网络来维持工作记忆中的信息——这些神经元网络在延迟期间是持续激活的<ref>{{Cite journal|author=Goldman-Rakic PS|title= Cellular basis of working memory |journal=Neuron |volume=14 |issue= 3 |pages=447–485 |year=1995 | pmid = 7695894 | doi = 10.1016/0896-6273(95)90304-6 }}</ref>。这些回路由GABA能中间神经元的侧抑制调节<ref>{{Cite journal|vauthors=Rao SG, Williams GV, Goldman-Rakic PS |title= Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory |journal=Journal of Neuroscience |volume=20 |pages=485–494 |year=2000|pmid=10627624 |pmc= 6774140 |issue=1|doi= 10.1523/JNEUROSCI.20-01-00485.2000 }}</ref>。神经调节性唤起系统对PFC工作记忆功能产生了显著影响; 例如,过多或过少的多巴胺或去甲肾上腺素会减损PFC神经网络放电功能<ref>{{Cite journal|doi=10.1016/j.tics.2010.05.003|author1=Arnsten AFT |author2=Paspalas CD |author3=Gamo NJ |author4=Y. Y |author5=Wang M |title= Dynamic Network Connectivity: A new form of neuroplasticity|journal=Trends in Cognitive Sciences|volume=14 |pages=365–375 |year=2010|issue=8|pmid=20554470|pmc=2914830}}</ref>和工作记忆表现<ref>{{Cite journal|doi=10.1146/annurev.neuro.051508.135535|vauthors=Robbins TW, Arnsten AF |title= The neuropsychopharmacology of fronto-executive function: monoaminergic modulation |journal=Annu Rev Neurosci|volume=32 |pages=267–287 |year=2009|pmid=19555290|pmc=2863127}}</ref>。
      第250行: 第250行:  
The research described above on persistent firing of certain neurons in the delay period of working memory tasks shows that the brain has a mechanism of keeping representations active without external input. Keeping representations active, however, is not enough if the task demands maintaining more than one chunk of information. In addition, the components and features of each chunk must be bound together to prevent them from being mixed up. For example, if a red triangle and a green square must be remembered at the same time, one must make sure that "red" is bound to "triangle" and "green" is bound to "square". One way of establishing such bindings is by having the neurons that represent features of the same chunk fire in synchrony, and those that represent features belonging to different chunks fire out of sync. In the example, neurons representing redness would fire in synchrony with neurons representing the triangular shape, but out of sync with those representing the square shape. So far, there is no direct evidence that working memory uses this binding mechanism, and other mechanisms have been proposed as well. It has been speculated that synchronous firing of neurons involved in working memory oscillate with frequencies in the theta band (4 to 8&nbsp;Hz). Indeed, the power of theta frequency in the EEG increases with working memory load, and oscillations in the theta band measured over different parts of the skull become more coordinated when the person tries to remember the binding between two components of information.
 
The research described above on persistent firing of certain neurons in the delay period of working memory tasks shows that the brain has a mechanism of keeping representations active without external input. Keeping representations active, however, is not enough if the task demands maintaining more than one chunk of information. In addition, the components and features of each chunk must be bound together to prevent them from being mixed up. For example, if a red triangle and a green square must be remembered at the same time, one must make sure that "red" is bound to "triangle" and "green" is bound to "square". One way of establishing such bindings is by having the neurons that represent features of the same chunk fire in synchrony, and those that represent features belonging to different chunks fire out of sync. In the example, neurons representing redness would fire in synchrony with neurons representing the triangular shape, but out of sync with those representing the square shape. So far, there is no direct evidence that working memory uses this binding mechanism, and other mechanisms have been proposed as well. It has been speculated that synchronous firing of neurons involved in working memory oscillate with frequencies in the theta band (4 to 8&nbsp;Hz). Indeed, the power of theta frequency in the EEG increases with working memory load, and oscillations in the theta band measured over different parts of the skull become more coordinated when the person tries to remember the binding between two components of information.
   −
上述关于工作记忆任务延迟期间某些神经元持续放电的研究表明,大脑有一种机制能使在无外部输入的情况下表征依旧保持活跃。但这不足以应对维护多个信息块的任务。此外,每个组块的组件和特性必须绑定在一起,以防止混淆。例如,如果必须同时记住一个红色三角形和一个绿色正方形,就必须确保“红色”与“三角形”绑定,而“绿色”与“正方形”绑定。实现该目标的一种方法是让表现同一组块特征的神经元同步激活,那些表现不同组块特征的神经元则不同步激活<ref>{{Cite journal|date=August 2001|title=A cortical mechanism for binding in visual working memory|journal=Journal of Cognitive Neuroscience|volume=13|issue=6|pages=766–85|doi=10.1162/08989290152541430|pmid=11564321|vauthors=Raffone A, Wolters G}}</ref>。在这个例子中,代表红色的神经元会与代表三角形的神经元同步激活,与代表正方形的神经元不同步激活。不过目前还没有直接的证据表明工作记忆使用这种结合机制,因此学界也提出了其他一些观点<ref>{{Cite book|title=The unity of consciousness: Binding, integration, and dissociation|last2=Busby|first2=Richard S.|last3=Soto|first3=Rodolfo|publisher=Oxford University Press|year=2003|isbn=978-0-19-850857-1|location=Oxford|pages=168–90|chapter=Three forms of binding and their neural substrates: Alternatives to temporal synchrony|oclc=50747505|first1=Randall C.|last1=O'Reilly|editor1-first=Axel|editor1-last=Cleeremans|chapterurl=http://psycnet.apa.org/psycinfo/2003-88180-008}}</ref>。据推测,工作记忆相关神经元的同步激活是在'''<font color="#ff8000">θ波段 theta band (4ー8赫兹)振荡。脑电图θ频率的能量确实随工作记忆负荷的增加而增加<ref>{{Cite book|title=Handbook of binding and memory|publisher=Oxford University Press|year=2006|location=Oxford|pages=115–144|chapter=Binding principles in the theta frequency range|last1=Klimesch|first1=W.|editor1-first=H. D.|editor1-last=Zimmer|editor2-first=A.|editor2-last=Mecklinger|editor3-first=U.|editor3-last=Lindenberger}}</ref>,当受试者试图记住信息的两个组成部分之间的联系时,在头骨不同部位测量到的 θ 波段的振荡变得更加协调<ref>{{Cite journal|date=May 2007|title=Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency|journal=NeuroImage|volume=35|issue=4|pages=1654–62|doi=10.1016/j.neuroimage.2007.02.011|pmid=17379539|vauthors=Wu X, Chen X, Li Z, Han S, Zhang D}}</ref>。
+
上述关于工作记忆任务延迟期间某些神经元持续放电的研究表明,大脑有一种机制能使在无外部输入的情况下表征依旧保持活跃。但这不足以应对维护多个信息块的任务。此外,每个组块的组件和特性必须绑定在一起,以防止混淆。例如,如果必须同时记住一个红色三角形和一个绿色正方形,就必须确保“红色”与“三角形”绑定,而“绿色”与“正方形”绑定。实现该目标的一种方法是让表现同一组块特征的神经元同步激活,那些表现不同组块特征的神经元则不同步激活<ref>{{Cite journal|date=August 2001|title=A cortical mechanism for binding in visual working memory|journal=Journal of Cognitive Neuroscience|volume=13|issue=6|pages=766–85|doi=10.1162/08989290152541430|pmid=11564321|vauthors=Raffone A, Wolters G}}</ref>。在这个例子中,代表红色的神经元会与代表三角形的神经元同步激活,与代表正方形的神经元不同步激活。不过目前还没有直接的证据表明工作记忆使用这种结合机制,因此学界也提出了其他一些观点<ref>{{Cite book|title=The unity of consciousness: Binding, integration, and dissociation|last2=Busby|first2=Richard S.|last3=Soto|first3=Rodolfo|publisher=Oxford University Press|year=2003|isbn=978-0-19-850857-1|location=Oxford|pages=168–90|chapter=Three forms of binding and their neural substrates: Alternatives to temporal synchrony|oclc=50747505|first1=Randall C.|last1=O'Reilly|editor1-first=Axel|editor1-last=Cleeremans|chapterurl=http://psycnet.apa.org/psycinfo/2003-88180-008}}</ref>。据推测,工作记忆相关神经元的同步激活是在'''<font color="#ff8000">θ波段 theta band</font>''' (4ー8赫兹)振荡。脑电图θ频率的能量确实随工作记忆负荷的增加而增加<ref>{{Cite book|title=Handbook of binding and memory|publisher=Oxford University Press|year=2006|location=Oxford|pages=115–144|chapter=Binding principles in the theta frequency range|last1=Klimesch|first1=W.|editor1-first=H. D.|editor1-last=Zimmer|editor2-first=A.|editor2-last=Mecklinger|editor3-first=U.|editor3-last=Lindenberger}}</ref>,当受试者试图记住信息的两个组成部分之间的联系时,在头骨不同部位测量到的 θ 波段的振荡变得更加协调<ref>{{Cite journal|date=May 2007|title=Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency|journal=NeuroImage|volume=35|issue=4|pages=1654–62|doi=10.1016/j.neuroimage.2007.02.011|pmid=17379539|vauthors=Wu X, Chen X, Li Z, Han S, Zhang D}}</ref>。
    
=== 脑内定位 Localization in the brain ===
 
=== 脑内定位 Localization in the brain ===
第258行: 第258行:  
Localization of brain functions in humans has become much easier with the advent of brain imaging methods (PET and fMRI). This research has confirmed that areas in the PFC are involved in working memory functions. During the 1990s much debate has centered on the different functions of the ventrolateral (i.e.,&nbsp;lower areas) and the dorsolateral (higher) areas of the PFC. A human lesion study provides additional evidence for the role of the dorsolateral prefrontal cortex in working memory. One view was that the dorsolateral areas are responsible for spatial working memory and the ventrolateral areas for non-spatial working memory. Another view proposed a functional distinction, arguing that ventrolateral areas are mostly involved in pure maintenance of information, whereas dorsolateral areas are more involved in tasks requiring some processing of the memorized material. The debate is not entirely resolved but most of the evidence supports the functional distinction.
 
Localization of brain functions in humans has become much easier with the advent of brain imaging methods (PET and fMRI). This research has confirmed that areas in the PFC are involved in working memory functions. During the 1990s much debate has centered on the different functions of the ventrolateral (i.e.,&nbsp;lower areas) and the dorsolateral (higher) areas of the PFC. A human lesion study provides additional evidence for the role of the dorsolateral prefrontal cortex in working memory. One view was that the dorsolateral areas are responsible for spatial working memory and the ventrolateral areas for non-spatial working memory. Another view proposed a functional distinction, arguing that ventrolateral areas are mostly involved in pure maintenance of information, whereas dorsolateral areas are more involved in tasks requiring some processing of the memorized material. The debate is not entirely resolved but most of the evidence supports the functional distinction.
   −
'''<font color="#ff8000">脑成像brain imaging方法(PET和fMRI)的出现让人脑功能定位更加容易。一项研究证实PFC中的一些区域确实影响了工作记忆功能。在20世纪90年代,讨论大多集中在腹外侧区(即较低区域)和背外侧区(较高区域)的不同功能上。一项关于人体损伤的研究为背外侧脑前额叶外皮在工作记忆中发挥作用提供了额外的证据<ref>{{cite journal|last2=Koenigs|first2=Michael|last3=Grafman|first3=Jordan|year=2013|title=Dorsolateral prefrontal contributions to human working memory|journal=Cortex|volume=49|issue=5|pages=1195–1205|doi=10.1016/j.cortex.2012.05.022|pmid=22789779|last1=Barbey|first1=Aron K.|pmc=3495093}}</ref>。一种观点认为,背外侧区负责空间工作记忆,腹外侧区负责非空间工作记忆。另一种观点则是'''<font color="#ff8000">功能区分说functional distinction,认为腹外侧区域主要负责纯粹的信息维护,而背外侧区域则更倾向于负责记忆材料的处理。虽然分歧并没有彻底解决,但功能区分说还是得到了大多数证据的支持<ref>{{Cite journal|author=Owen, A. M.|title=The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging |journal=The European Journal of Neuroscience |volume=9 |issue=7 |pages=1329–39 |date=July 1997 |pmid=9240390 |doi=10.1111/j.1460-9568.1997.tb01487.x}}</ref>。
+
'''<font color="#ff8000">脑成像brain imaging</font>'''方法(PET和fMRI)的出现让人脑功能定位更加容易。一项研究证实PFC中的一些区域确实影响了工作记忆功能。在20世纪90年代,讨论大多集中在腹外侧区(即较低区域)和背外侧区(较高区域)的不同功能上。一项关于人体损伤的研究为背外侧脑前额叶外皮在工作记忆中发挥作用提供了额外的证据<ref>{{cite journal|last2=Koenigs|first2=Michael|last3=Grafman|first3=Jordan|year=2013|title=Dorsolateral prefrontal contributions to human working memory|journal=Cortex|volume=49|issue=5|pages=1195–1205|doi=10.1016/j.cortex.2012.05.022|pmid=22789779|last1=Barbey|first1=Aron K.|pmc=3495093}}</ref>。一种观点认为,背外侧区负责空间工作记忆,腹外侧区负责非空间工作记忆。另一种观点则是'''<font color="#ff8000">功能区分说functional distinction</font>''',认为腹外侧区域主要负责纯粹的信息维护,而背外侧区域则更倾向于负责记忆材料的处理。虽然分歧并没有彻底解决,但功能区分说还是得到了大多数证据的支持<ref>{{Cite journal|author=Owen, A. M.|title=The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging |journal=The European Journal of Neuroscience |volume=9 |issue=7 |pages=1329–39 |date=July 1997 |pmid=9240390 |doi=10.1111/j.1460-9568.1997.tb01487.x}}</ref>。
    
Brain imaging has revealed that working memory functions are not limited to the PFC. A review of numerous studies<ref>{{Cite journal|vauthors=Smith EE, Jonides J |title=Storage and executive processes in the frontal lobes |journal=Science |volume=283 |issue=5408 |pages=1657–61 |date=March 1999 |pmid=10073923 |doi=10.1126/science.283.5408.1657|citeseerx=10.1.1.207.8961 }}</ref> shows areas of activation during working memory tasks scattered over a large part of the cortex. There is a tendency for spatial tasks to recruit more right-hemisphere areas, and for verbal and object working memory to recruit more left-hemisphere areas. The activation during verbal working memory tasks can be broken down into one component reflecting maintenance, in the left posterior parietal cortex, and a component reflecting subvocal rehearsal, in the left frontal cortex (Broca's area, known to be involved in speech production).<ref>{{Cite journal|author=Smith, E. E.|author2=Jonides, J.|author3=Marshuetz, C.|author4=Koeppe, R. A.|title=Components of verbal working memory: evidence from neuroimaging |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=95 |issue=3 |pages=876–82 |date=February 1998 |pmid=9448254 |pmc=33811 |doi=10.1073/pnas.95.3.876|bibcode=1998PNAS...95..876S }}</ref>
 
Brain imaging has revealed that working memory functions are not limited to the PFC. A review of numerous studies<ref>{{Cite journal|vauthors=Smith EE, Jonides J |title=Storage and executive processes in the frontal lobes |journal=Science |volume=283 |issue=5408 |pages=1657–61 |date=March 1999 |pmid=10073923 |doi=10.1126/science.283.5408.1657|citeseerx=10.1.1.207.8961 }}</ref> shows areas of activation during working memory tasks scattered over a large part of the cortex. There is a tendency for spatial tasks to recruit more right-hemisphere areas, and for verbal and object working memory to recruit more left-hemisphere areas. The activation during verbal working memory tasks can be broken down into one component reflecting maintenance, in the left posterior parietal cortex, and a component reflecting subvocal rehearsal, in the left frontal cortex (Broca's area, known to be involved in speech production).<ref>{{Cite journal|author=Smith, E. E.|author2=Jonides, J.|author3=Marshuetz, C.|author4=Koeppe, R. A.|title=Components of verbal working memory: evidence from neuroimaging |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=95 |issue=3 |pages=876–82 |date=February 1998 |pmid=9448254 |pmc=33811 |doi=10.1073/pnas.95.3.876|bibcode=1998PNAS...95..876S }}</ref>
第298行: 第298行:  
Working memory has been suggested to involve two processes with different neuroanatomical locations in the frontal and parietal lobes. First, a selection operation that retrieves the most relevant item, and second an updating operation that changes the focus of attention made upon it. Updating the attentional focus has been found to involve the transient activation in the caudal superior frontal sulcus and posterior parietal cortex, while increasing demands on selection selectively changes activation in the rostral superior frontal sulcus and posterior cingulate/precuneus.
 
Working memory has been suggested to involve two processes with different neuroanatomical locations in the frontal and parietal lobes. First, a selection operation that retrieves the most relevant item, and second an updating operation that changes the focus of attention made upon it. Updating the attentional focus has been found to involve the transient activation in the caudal superior frontal sulcus and posterior parietal cortex, while increasing demands on selection selectively changes activation in the rostral superior frontal sulcus and posterior cingulate/precuneus.
   −
我们一般认为,工作记忆包括两种过程——两类过程发生于额叶和顶叶两个不同位置<ref name="Bledowski">{{Cite journal|author=Bledowski, C.|author2=Rahm, B.|author3=Rowe, J. B. |title=What 'works' in working memory? Separate systems for selection and updating of critical information |journal=The Journal of Neuroscience |volume=29 |issue=43 |pages=13735–41 |date=October 2009 |pmid=19864586 |doi=10.1523/JNEUROSCI.2547-09.2009 |pmc=2785708}}</ref>。首先是检索最相关项的选择操作,其次是更改关注焦点的更新操作。更新操作包括'''<font color="#ff8000">额上沟superior frontal sulcus尾部和'''<font color="#ff8000">后顶叶皮质posterior parietal cortex的短暂激活,选择操作随选择的需求增加而选择性地发生额上沟和后扣带回/楔前叶激活<ref name="Bledowski" />。
+
我们一般认为,工作记忆包括两种过程——两类过程发生于额叶和顶叶两个不同位置<ref name="Bledowski">{{Cite journal|author=Bledowski, C.|author2=Rahm, B.|author3=Rowe, J. B. |title=What 'works' in working memory? Separate systems for selection and updating of critical information |journal=The Journal of Neuroscience |volume=29 |issue=43 |pages=13735–41 |date=October 2009 |pmid=19864586 |doi=10.1523/JNEUROSCI.2547-09.2009 |pmc=2785708}}</ref>。首先是检索最相关项的选择操作,其次是更改关注焦点的更新操作。更新操作包括'''<font color="#ff8000">额上沟superior frontal sulcus</font>'''尾部和'''<font color="#ff8000">后顶叶皮质posterior parietal cortex</font>'''的短暂激活,选择操作随选择的需求增加而选择性地发生额上沟和后扣带回/楔前叶激活<ref name="Bledowski" />。
      第313行: 第313行:  
Brain imaging studies have been conducted with the reading span task or related tasks. Increased activation during these tasks was found in the PFC and, in several studies, also in the anterior cingulate cortex (ACC). People performing better on the task showed larger increase of activation in these areas, and their activation was correlated more over time, suggesting that their neural activity in these two areas was better coordinated, possibly due to stronger connectivity.
 
Brain imaging studies have been conducted with the reading span task or related tasks. Increased activation during these tasks was found in the PFC and, in several studies, also in the anterior cingulate cortex (ACC). People performing better on the task showed larger increase of activation in these areas, and their activation was correlated more over time, suggesting that their neural activity in these two areas was better coordinated, possibly due to stronger connectivity.
   −
脑成像研究已用于进行阅读广度任务或相关任务。任务过程中,PFC的活跃性增加,'''<font color="#ff8000">前扣带皮层anterior cingulate cortex (ACC)的活性也有所增强。那些在任务中表现更好的人的这些区域活性显著提升,且随着时间的推移变得更强。这表明这两个区域的神经活动协调度更高——可能是因为区域间有更强的关联性<ref>{{Cite journal|author=Kondo, H.|author2=Osaka, N.|author3=Osaka, M.|title=Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting |journal=NeuroImage |volume=23 |issue=2 |pages=670–9 |date=October 2004 |pmid=15488417 |doi=10.1016/j.neuroimage.2004.06.014}}</ref><ref>{{Cite journal|vauthors=Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H |title=The neural basis of executive function in working memory: an fMRI study based on individual differences |journal=NeuroImage |volume=21 |issue=2 |pages=623–31 |date=February 2004 |pmid=14980565 |doi=10.1016/j.neuroimage.2003.09.069}}</ref>
+
脑成像研究已用于进行阅读广度任务或相关任务。任务过程中,PFC的活跃性增加,'''<font color="#ff8000">前扣带皮层anterior cingulate cortex </font>''' (ACC)的活性也有所增强。那些在任务中表现更好的人的这些区域活性显著提升,且随着时间的推移变得更强。这表明这两个区域的神经活动协调度更高——可能是因为区域间有更强的关联性<ref>{{Cite journal|author=Kondo, H.|author2=Osaka, N.|author3=Osaka, M.|title=Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting |journal=NeuroImage |volume=23 |issue=2 |pages=670–9 |date=October 2004 |pmid=15488417 |doi=10.1016/j.neuroimage.2004.06.014}}</ref><ref>{{Cite journal|vauthors=Osaka N, Osaka M, Kondo H, Morishita M, Fukuyama H, Shibasaki H |title=The neural basis of executive function in working memory: an fMRI study based on individual differences |journal=NeuroImage |volume=21 |issue=2 |pages=623–31 |date=February 2004 |pmid=14980565 |doi=10.1016/j.neuroimage.2003.09.069}}</ref>
 
 
   第323行: 第323行:     
'''<font color="#ff8000">前额叶皮质基底节工作记忆记忆模型 Prefrontal Cortex Basal Ganglia Working Memory (PBWM)</font>'''是模拟神经生理学和工作记忆功能模型的一种。
 
'''<font color="#ff8000">前额叶皮质基底节工作记忆记忆模型 Prefrontal Cortex Basal Ganglia Working Memory (PBWM)</font>'''是模拟神经生理学和工作记忆功能模型的一种。
在该模型中,脑前额叶外皮与基底神经节协力完成工作记忆任务,并得到许多研究证明支持<ref>{{Cite journal|last1=Baier|first1=B.|last2=Karnath|first2=H.-O.|last3=Dieterich|first3=M.|last4=Birklein|first4=F.|last5=Heinze|first5=C.|last6=Muller|first6=N. G.|date=2010-07-21|title=Keeping Memory Clear and Stable--The Contribution of Human Basal Ganglia and Prefrontal Cortex to Working Memory|journal=Journal of Neuroscience|volume=30|issue=29|pages=9788–9792|doi=10.1523/jneurosci.1513-10.2010|pmid=20660261|pmc=6632833|issn=0270-6474|doi-access=free}}</ref>,例如使用'''<font color="#ff8000">消融技术ablation techniques治疗脑前额叶外皮和基底神经节受损、癫痫发作患者等。<ref name=":2" />研究人员发现,这种损害使得工作记忆的执行功能受损。<ref name=":2">{{Cite journal|last1=Voytek|first1=B.|last2=Knight|first2=R. T.|date=2010-10-04|title=Prefrontal cortex and basal ganglia contributions to visual working memory|journal=Proceedings of the National Academy of Sciences|volume=107|issue=42|pages=18167–18172|doi=10.1073/pnas.1007277107|pmid=20921401|issn=0027-8424|doi-access=free}}</ref>此外还有对因服用'''<font color="#ff8000">甲基苯丙胺 methamphetamine而导致大脑改变的病人进行工作记忆训练后成功增加其基底神经节容量的案例<ref>{{Cite journal|last1=Brooks|first1=S. J.|last2=Burch|first2=K. H.|last3=Maiorana|first3=S. A.|last4=Cocolas|first4=E.|last5=Schioth|first5=H. B.|last6=Nilsson|first6=E. K.|last7=Kamaloodien|first7=K.|last8=Stein|first8=D. J.|date=2016-02-01|title=Psychological intervention with working memory training increases basal ganglia volume: A VBM study of inpatient treatment for methamphetamine use|url=http://www.sciencedirect.com/science/article/pii/S2213158216301541|journal=NeuroImage: Clinical|language=en|volume=12|pages=478–491|doi=10.1016/j.nicl.2016.08.019|pmid=27625988|issn=2213-1582|doi-access=free}}</ref>。
+
在该模型中,脑前额叶外皮与基底神经节协力完成工作记忆任务,并得到许多研究证明支持<ref>{{Cite journal|last1=Baier|first1=B.|last2=Karnath|first2=H.-O.|last3=Dieterich|first3=M.|last4=Birklein|first4=F.|last5=Heinze|first5=C.|last6=Muller|first6=N. G.|date=2010-07-21|title=Keeping Memory Clear and Stable--The Contribution of Human Basal Ganglia and Prefrontal Cortex to Working Memory|journal=Journal of Neuroscience|volume=30|issue=29|pages=9788–9792|doi=10.1523/jneurosci.1513-10.2010|pmid=20660261|pmc=6632833|issn=0270-6474|doi-access=free}}</ref>,例如使用'''<font color="#ff8000">消融技术ablation techniques</font>'''治疗脑前额叶外皮和基底神经节受损、癫痫发作患者等。<ref name=":2" />研究人员发现,这种损害使得工作记忆的执行功能受损。<ref name=":2">{{Cite journal|last1=Voytek|first1=B.|last2=Knight|first2=R. T.|date=2010-10-04|title=Prefrontal cortex and basal ganglia contributions to visual working memory|journal=Proceedings of the National Academy of Sciences|volume=107|issue=42|pages=18167–18172|doi=10.1073/pnas.1007277107|pmid=20921401|issn=0027-8424|doi-access=free}}</ref>此外还有对因服用'''<font color="#ff8000">甲基苯丙胺 methamphetamine</font>'''而导致大脑改变的病人进行工作记忆训练后成功增加其基底神经节容量的案例<ref>{{Cite journal|last1=Brooks|first1=S. J.|last2=Burch|first2=K. H.|last3=Maiorana|first3=S. A.|last4=Cocolas|first4=E.|last5=Schioth|first5=H. B.|last6=Nilsson|first6=E. K.|last7=Kamaloodien|first7=K.|last8=Stein|first8=D. J.|date=2016-02-01|title=Psychological intervention with working memory training increases basal ganglia volume: A VBM study of inpatient treatment for methamphetamine use|url=http://www.sciencedirect.com/science/article/pii/S2213158216301541|journal=NeuroImage: Clinical|language=en|volume=12|pages=478–491|doi=10.1016/j.nicl.2016.08.019|pmid=27625988|issn=2213-1582|doi-access=free}}</ref>。
    
=== 神经生理学的压力效果 Effects of stress on neurophysiology ===
 
=== 神经生理学的压力效果 Effects of stress on neurophysiology ===
第331行: 第331行:  
Working memory is impaired by acute and chronic psychological stress. This phenomenon was first discovered in animal studies by Arnsten and colleagues, who have shown that stress-induced catecholamine release in PFC rapidly decreases PFC neuronal firing and impairs working memory performance through feedforward, intracellular signaling pathways. Exposure to chronic stress leads to more profound working memory deficits and additional architectural changes in PFC, including dendritic atrophy and spine loss, which can be prevented by inhibition of protein kinase C signaling. fMRI research has extended this research to humans, and confirms that reduced working memory caused by acute stress links to reduced activation of the PFC, and stress increased levels of catecholamines. Imaging studies of medical students undergoing stressful exams have also shown weakened PFC functional connectivity, consistent with the animal studies. The marked effects of stress on PFC structure and function may help to explain how stress can cause or exacerbate mental illness.
 
Working memory is impaired by acute and chronic psychological stress. This phenomenon was first discovered in animal studies by Arnsten and colleagues, who have shown that stress-induced catecholamine release in PFC rapidly decreases PFC neuronal firing and impairs working memory performance through feedforward, intracellular signaling pathways. Exposure to chronic stress leads to more profound working memory deficits and additional architectural changes in PFC, including dendritic atrophy and spine loss, which can be prevented by inhibition of protein kinase C signaling. fMRI research has extended this research to humans, and confirms that reduced working memory caused by acute stress links to reduced activation of the PFC, and stress increased levels of catecholamines. Imaging studies of medical students undergoing stressful exams have also shown weakened PFC functional connectivity, consistent with the animal studies. The marked effects of stress on PFC structure and function may help to explain how stress can cause or exacerbate mental illness.
   −
急性和慢性心理压力都会损害工作记忆。这最早由安斯登 Arnsten 和他的同事们<ref>{{Cite journal|doi=10.1126/science.280.5370.1711|author=Arnsten, A. F.|title=The biology of being frazzled |journal=Science |volume=280 |issue=5370 |pages=1711–2 |date=June 1998 |pmid=9660710}}</ref>在动物实验中发现。他们发现应激诱导PFC中'''<font color="#ff8000">儿茶酚胺 catecholamine的释放可迅速降低PFC神经元的放电频率,并通过前馈和细胞内信号通路损害工作记忆<ref>{{Cite journal|author=Arnsten, AF |title=Stress signalling pathways that impair prefrontal cortex structure and function |journal=Nature Reviews Neuroscience |volume=10 |issue=6 |pages=410–22 |date=June 2009 |pmid=19455173|pmc=2907136 |doi=10.1038/nrn2648}}</ref>。长期暴露在压力下会导致更深层次的工作记忆缺陷和额外的PFC结构变化——包括树突萎缩和脊柱丧失<ref>{{Cite journal|author=Radley, J. J.|author2= Rocher, A. B.|author3=Miller, M.|author4= Janssen, W. G.|author5=Liston, C.|author6=Hof, P. R.|author7=McEwen, B. S.|author8=Morrison, J. H.|title=Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex |journal=Cereb Cortex |volume=16 |issue=3 |pages=313–20 |date=Mar 2006 |pmid=15901656 |doi=10.1093/cercor/bhi104|doi-access=free}}</ref>——这些都可以通过抑制蛋白激酶C信号来预防<ref>{{Cite journal|author=Hains, A. B.|author2=Vu, M. A.|author3=Maciejewski, P. K.|author4= van Dyck, C. H. |authorlink4=Christopher H. van Dyck |author5=Gottron, M.|author6= Arnsten, A. F. |title=Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress |journal=Proceedings of the National Academy of Sciences|volume=106 |issue=42 |pages=17957–62 |date=Oct 2009 |pmid=19805148|pmc=2742406 |doi=10.1073/pnas.0908563106|bibcode=2009PNAS..10617957H }}</ref>。功能磁共振成像研究已经将这项研究进一步扩展到人类,并证实了急性压力导致的工作记忆减少会降低PFC的活性,同时,压力还会导致儿茶酚胺水平提高<ref>{{Cite journal|vauthors=Qin S, Hermans EJ, van Marle HJ, Luo J, Fernández G |title=Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex |journal=Biological Psychiatry |volume=66 |issue=1 |pages=25–32 |date=July 2009 |pmid=19403118 |doi=10.1016/j.biopsych.2009.03.006}}</ref>。在经历紧张的考试后,医学院学生的成像研究也表明其PFC功能减弱,与动物实验的结果一致<ref>{{Cite journal|vauthors=Liston C, McEwen BS, Casey BJ |title=Psychosocial stress reversibly disrupts prefrontal processing and attentional control |journal=Proceedings of the National Academy of Sciences|volume=106 |issue=3 |pages=912–7 |date=Jan 2009 |pmid=19139412|pmc=2621252 |doi=10.1073/pnas.0807041106|bibcode=2009PNAS..106..912L }}</ref>。压力对PFC结构和功能的显著影响可能有助于解释为何压力会加重甚至导致精神疾病。
+
急性和慢性心理压力都会损害工作记忆。这最早由安斯登 Arnsten 和他的同事们<ref>{{Cite journal|doi=10.1126/science.280.5370.1711|author=Arnsten, A. F.|title=The biology of being frazzled |journal=Science |volume=280 |issue=5370 |pages=1711–2 |date=June 1998 |pmid=9660710}}</ref>在动物实验中发现。他们发现应激诱导PFC中'''<font color="#ff8000">儿茶酚胺 catecholamine</font>'''的释放可迅速降低PFC神经元的放电频率,并通过前馈和细胞内信号通路损害工作记忆<ref>{{Cite journal|author=Arnsten, AF |title=Stress signalling pathways that impair prefrontal cortex structure and function |journal=Nature Reviews Neuroscience |volume=10 |issue=6 |pages=410–22 |date=June 2009 |pmid=19455173|pmc=2907136 |doi=10.1038/nrn2648}}</ref>。长期暴露在压力下会导致更深层次的工作记忆缺陷和额外的PFC结构变化——包括树突萎缩和脊柱丧失<ref>{{Cite journal|author=Radley, J. J.|author2= Rocher, A. B.|author3=Miller, M.|author4= Janssen, W. G.|author5=Liston, C.|author6=Hof, P. R.|author7=McEwen, B. S.|author8=Morrison, J. H.|title=Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex |journal=Cereb Cortex |volume=16 |issue=3 |pages=313–20 |date=Mar 2006 |pmid=15901656 |doi=10.1093/cercor/bhi104|doi-access=free}}</ref>——这些都可以通过抑制蛋白激酶C信号来预防<ref>{{Cite journal|author=Hains, A. B.|author2=Vu, M. A.|author3=Maciejewski, P. K.|author4= van Dyck, C. H. |authorlink4=Christopher H. van Dyck |author5=Gottron, M.|author6= Arnsten, A. F. |title=Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress |journal=Proceedings of the National Academy of Sciences|volume=106 |issue=42 |pages=17957–62 |date=Oct 2009 |pmid=19805148|pmc=2742406 |doi=10.1073/pnas.0908563106|bibcode=2009PNAS..10617957H }}</ref>。功能磁共振成像研究已经将这项研究进一步扩展到人类,并证实了急性压力导致的工作记忆减少会降低PFC的活性,同时,压力还会导致儿茶酚胺水平提高<ref>{{Cite journal|vauthors=Qin S, Hermans EJ, van Marle HJ, Luo J, Fernández G |title=Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex |journal=Biological Psychiatry |volume=66 |issue=1 |pages=25–32 |date=July 2009 |pmid=19403118 |doi=10.1016/j.biopsych.2009.03.006}}</ref>。在经历紧张的考试后,医学院学生的成像研究也表明其PFC功能减弱,与动物实验的结果一致<ref>{{Cite journal|vauthors=Liston C, McEwen BS, Casey BJ |title=Psychosocial stress reversibly disrupts prefrontal processing and attentional control |journal=Proceedings of the National Academy of Sciences|volume=106 |issue=3 |pages=912–7 |date=Jan 2009 |pmid=19139412|pmc=2621252 |doi=10.1073/pnas.0807041106|bibcode=2009PNAS..106..912L }}</ref>。压力对PFC结构和功能的显著影响可能有助于解释为何压力会加重甚至导致精神疾病。
    
The more stress in one's life, the lower the efficiency of working memory in performing simple cognitive tasks. Students who performed exercises that reduced the intrusion of negative thoughts showed an increase in their working memory capacity. Mood states (positive or negative) can have an influence on the neurotransmitter dopamine, which in turn can affect problem solving.<ref>{{cite book|last=Revlin|first=Russell|title=Human Cognition : Theory and Practice.|year=2007|publisher=Worth Pub|location=New York, NY|isbn=978-0-7167-5667-5|page=147|edition=International}}</ref>
 
The more stress in one's life, the lower the efficiency of working memory in performing simple cognitive tasks. Students who performed exercises that reduced the intrusion of negative thoughts showed an increase in their working memory capacity. Mood states (positive or negative) can have an influence on the neurotransmitter dopamine, which in turn can affect problem solving.<ref>{{cite book|last=Revlin|first=Russell|title=Human Cognition : Theory and Practice.|year=2007|publisher=Worth Pub|location=New York, NY|isbn=978-0-7167-5667-5|page=147|edition=International}}</ref>
第383行: 第383行:  
In a large-scale screening study, one in ten children in mainstream classrooms were identified with working memory deficits. The majority of them performed very poorly in academic achievements, independent of their IQ. Similarly, working memory deficits have been identified in national curriculum low-achievers as young as seven years of age. Without appropriate intervention, these children lag behind their peers. A recent study of 37 school-age children with significant learning disabilities has shown that working memory capacity at baseline measurement, but not IQ, predicts learning outcomes two years later. This suggests that working memory impairments are associated with low learning outcomes and constitute a high risk factor for educational underachievement for children. In children with learning disabilities such as dyslexia, ADHD, and developmental coordination disorder, a similar pattern is evident.
 
In a large-scale screening study, one in ten children in mainstream classrooms were identified with working memory deficits. The majority of them performed very poorly in academic achievements, independent of their IQ. Similarly, working memory deficits have been identified in national curriculum low-achievers as young as seven years of age. Without appropriate intervention, these children lag behind their peers. A recent study of 37 school-age children with significant learning disabilities has shown that working memory capacity at baseline measurement, but not IQ, predicts learning outcomes two years later. This suggests that working memory impairments are associated with low learning outcomes and constitute a high risk factor for educational underachievement for children. In children with learning disabilities such as dyslexia, ADHD, and developmental coordination disorder, a similar pattern is evident.
   −
在一项大规模的筛查研究中,大班教学模式中十分之一的儿童被认为患有工作记忆缺陷。他们中的大多数人在学术成就上乏善可陈——这与智商无关<ref>{{Cite journal|vauthors=Alloway TP, Gathercole SE, Kirkwood H, Elliott J |title=The cognitive and behavioral characteristics of children with low working memory |journal=Child Development |volume=80 |issue=2 |pages=606–21 |year=2009 |pmid=19467014 |doi=10.1111/j.1467-8624.2009.01282.x|hdl=1893/978 |hdl-access=free }}</ref>。同样,国家课程标准把最早在7岁就表现出工作记忆缺陷的儿童定性为低成就学生<ref>{{Cite journal|title = Working memory deficits in children with low achievements in the national curriculum at 7 years of age|journal = British Journal of Educational Psychology|date = 2000-06-01|issn = 2044-8279|pages = 177–194|volume = 70|issue = 2|doi = 10.1348/000709900158047|language = en|first1 = Susan E.|last1 = Gathercole|first2 = Susan J.|last2 = Pickering|pmid=10900777}}</ref>。如果没有适当的干预,这些孩子就会落后于同龄人。最近,一项针对37名具有显著学习障碍的学龄儿童的研究表明,基线测量的工作记忆能力(而非智商)可预测两年后的学习结果<ref>{{Cite journal|first1=Tracy Packiam |last1=Alloway |year=2009 |journal=European Journal of Psychological Assessment |volume=25 |issue=2 |pages=92–8 |doi=10.1027/1015-5759.25.2.92 |title=Working Memory, but Not IQ, Predicts Subsequent Learning in Children with Learning Difficulties|hdl=1893/1005 |hdl-access=free }}</ref>。这表明低分与工作记忆障碍有关,甚至成为导致教育失败的高风险因素。在有学习障碍的儿童中(如'''<font color="#ff8000">诵读困难dyslexia、'''<font color="#ff8000">多动症ADHD和失用症),类似模式是显而易见的<ref>{{cite book | last1 = Pickering | first1 = Susan J. | title = Working memory in dyslexia | editor1 = Tracy Packiam Alloway |editor2=Susan E Gathercole | work = Working memory and neurodevelopmental disorders | publisher = Psychology Press | year = 2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref><ref>{{cite book | last1 = Wagner | first1 = Richard K. | last2 = Muse | first2 = Andrea | title = Short-term memory deficits in developmental dyslexia | editor1 = Tracy Packiam Alloway|editor2=Susan E Gathercole | work = Working memory and neurodevelopmental disorders | publisher = Psychology Press | year = 2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref><ref>{{cite book | last1 = Roodenrys  | first1 = Steve  | title = Working memory function in attention deficit hyperactivity disorder | editor1 =  Tracy Packiam Alloway|editor2=Susan E Gathercole | work = orking memory and neurodevelopmental disorders | publisher =  Psychology Press | year =  2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref><ref>{{cite book | last1 = Alloway | first1 = Tracy Packiam | title = Working memory skills in children with developmental coordination disorder | editor1 =  Tracy Packiam Alloway|editor2=Susan E Gathercole | work = orking memory and neurodevelopmental disorders | publisher =  Psychology Press | year =  2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref>。
+
在一项大规模的筛查研究中,大班教学模式中十分之一的儿童被认为患有工作记忆缺陷。他们中的大多数人在学术成就上乏善可陈——这与智商无关<ref>{{Cite journal|vauthors=Alloway TP, Gathercole SE, Kirkwood H, Elliott J |title=The cognitive and behavioral characteristics of children with low working memory |journal=Child Development |volume=80 |issue=2 |pages=606–21 |year=2009 |pmid=19467014 |doi=10.1111/j.1467-8624.2009.01282.x|hdl=1893/978 |hdl-access=free }}</ref>。同样,国家课程标准把最早在7岁就表现出工作记忆缺陷的儿童定性为低成就学生<ref>{{Cite journal|title = Working memory deficits in children with low achievements in the national curriculum at 7 years of age|journal = British Journal of Educational Psychology|date = 2000-06-01|issn = 2044-8279|pages = 177–194|volume = 70|issue = 2|doi = 10.1348/000709900158047|language = en|first1 = Susan E.|last1 = Gathercole|first2 = Susan J.|last2 = Pickering|pmid=10900777}}</ref>。如果没有适当的干预,这些孩子就会落后于同龄人。最近,一项针对37名具有显著学习障碍的学龄儿童的研究表明,基线测量的工作记忆能力(而非智商)可预测两年后的学习结果<ref>{{Cite journal|first1=Tracy Packiam |last1=Alloway |year=2009 |journal=European Journal of Psychological Assessment |volume=25 |issue=2 |pages=92–8 |doi=10.1027/1015-5759.25.2.92 |title=Working Memory, but Not IQ, Predicts Subsequent Learning in Children with Learning Difficulties|hdl=1893/1005 |hdl-access=free }}</ref>。这表明低分与工作记忆障碍有关,甚至成为导致教育失败的高风险因素。在有学习障碍的儿童中(如'''<font color="#ff8000">诵读困难dyslexia</font>'''、'''<font color="#ff8000">多动症ADHD</font>'''和失用症),类似模式是显而易见的<ref>{{cite book | last1 = Pickering | first1 = Susan J. | title = Working memory in dyslexia | editor1 = Tracy Packiam Alloway |editor2=Susan E Gathercole | work = Working memory and neurodevelopmental disorders | publisher = Psychology Press | year = 2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref><ref>{{cite book | last1 = Wagner | first1 = Richard K. | last2 = Muse | first2 = Andrea | title = Short-term memory deficits in developmental dyslexia | editor1 = Tracy Packiam Alloway|editor2=Susan E Gathercole | work = Working memory and neurodevelopmental disorders | publisher = Psychology Press | year = 2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref><ref>{{cite book | last1 = Roodenrys  | first1 = Steve  | title = Working memory function in attention deficit hyperactivity disorder | editor1 =  Tracy Packiam Alloway|editor2=Susan E Gathercole | work = orking memory and neurodevelopmental disorders | publisher =  Psychology Press | year =  2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref><ref>{{cite book | last1 = Alloway | first1 = Tracy Packiam | title = Working memory skills in children with developmental coordination disorder | editor1 =  Tracy Packiam Alloway|editor2=Susan E Gathercole | work = orking memory and neurodevelopmental disorders | publisher =  Psychology Press | year =  2006 | location = New York, NY | isbn = 978-1-84169-560-0 |oclc =  63692704}}</ref>。
    
== 与注意力的关系 Relation to attention ==
 
== 与注意力的关系 Relation to attention ==
第416行: 第416行:  
Several neurotransmitters, such as dopamine and glutamate may be both involved in ADHD and working memory. Both are associated with the frontal brain, self-direction and self-regulation, but cause–effect have not been confirmed, so it is unclear whether working memory dysfunction leads to ADHD, or ADHD distractibility leads to poor functionality of working memory, or if there is some other connection.
 
Several neurotransmitters, such as dopamine and glutamate may be both involved in ADHD and working memory. Both are associated with the frontal brain, self-direction and self-regulation, but cause–effect have not been confirmed, so it is unclear whether working memory dysfunction leads to ADHD, or ADHD distractibility leads to poor functionality of working memory, or if there is some other connection.
   −
多巴胺和谷氨酸盐等多种神经递质可能都与ADHD和工作记忆有关。两者都与额叶大脑、'''<font color="#ff8000">自我定向self-direction和'''<font color="#ff8000">自我调节self-regulation有关,但其中的因果关系尚未得到确认。所以目前不清楚是工作记忆功能障碍导致 ADHD,还是注意力分散导致ADHD工作记忆功能低下,亦或存在着其他联系<ref>[http://guilfordjournals.com/doi/abs/10.1521/adhd.2008.16.6.8 Working Memory as a Core Deficit in ADHD: Preliminary Findings and Implications] – 2008</ref><ref name="Clark Blackwell 2007">{{cite journal|date=June 2007|title=Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology?|journal=Biol. Psychiatry|volume=61|issue=12|pages=1395–401|doi=10.1016/j.biopsych.2006.07.020|pmid=17046725|vauthors=Clark L, Blackwell AD, Aron AR, etal}}</ref><ref name="Roodenrys Koloski 2001">{{cite journal|last2=Koloski|first2=Natasha|last3=Grainger|first3=Jessica|year=2001|title=Working memory function in attention deficit hyperactivity disordered and reading disabled children|journal=British Journal of Developmental Psychology|volume=19|issue=3|pages=325–337|doi=10.1348/026151001166128|issn=0261-510X|last1=Roodenrys|first1=Steven}}</ref>。
+
多巴胺和谷氨酸盐等多种神经递质可能都与ADHD和工作记忆有关。两者都与额叶大脑、'''<font color="#ff8000">自我定向self-direction</font>'''和'''<font color="#ff8000">自我调节self-regulation</font>'''有关,但其中的因果关系尚未得到确认。所以目前不清楚是工作记忆功能障碍导致 ADHD,还是注意力分散导致ADHD工作记忆功能低下,亦或存在着其他联系<ref>[http://guilfordjournals.com/doi/abs/10.1521/adhd.2008.16.6.8 Working Memory as a Core Deficit in ADHD: Preliminary Findings and Implications] – 2008</ref><ref name="Clark Blackwell 2007">{{cite journal|date=June 2007|title=Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology?|journal=Biol. Psychiatry|volume=61|issue=12|pages=1395–401|doi=10.1016/j.biopsych.2006.07.020|pmid=17046725|vauthors=Clark L, Blackwell AD, Aron AR, etal}}</ref><ref name="Roodenrys Koloski 2001">{{cite journal|last2=Koloski|first2=Natasha|last3=Grainger|first3=Jessica|year=2001|title=Working memory function in attention deficit hyperactivity disordered and reading disabled children|journal=British Journal of Developmental Psychology|volume=19|issue=3|pages=325–337|doi=10.1348/026151001166128|issn=0261-510X|last1=Roodenrys|first1=Steven}}</ref>。
     
43

个编辑

导航菜单