更改

跳到导航 跳到搜索
添加37字节 、 2021年2月5日 (五) 11:52
无编辑摘要
第1行: 第1行:  
此词条暂由Henry翻译。
 
此词条暂由Henry翻译。
 +
 +
本词条已由[[用户:Qige96|Ricky]]翻译。
      第7行: 第9行:     
在计算机科学中,<font color="#ff8000"> 演化计算 Evolutionary computation</font>是一个受生物演化启发的全局优化算法家族,这些算法的研究属于人工智能和软计算的子领域。在技术术语上,它们是一类基于群体的试错型问题求解器,具有元启发式或随机优化特性。
 
在计算机科学中,<font color="#ff8000"> 演化计算 Evolutionary computation</font>是一个受生物演化启发的全局优化算法家族,这些算法的研究属于人工智能和软计算的子领域。在技术术语上,它们是一类基于群体的试错型问题求解器,具有元启发式或随机优化特性。
  −
        第16行: 第16行:     
在演化计算中,一个初始的候选解决方案集被生成并迭代更新。每一代都是通过随机去除不太理想的解法,引入小的随机变化而产生的。在生物学术语中,一个解决方案的群体会经历自然选择(或人工选择)和突变。因此,种群会逐渐演化,其适应度不断提高,在这个语境中所谓适应度就是算法选择的目标函数。  
 
在演化计算中,一个初始的候选解决方案集被生成并迭代更新。每一代都是通过随机去除不太理想的解法,引入小的随机变化而产生的。在生物学术语中,一个解决方案的群体会经历自然选择(或人工选择)和突变。因此,种群会逐渐演化,其适应度不断提高,在这个语境中所谓适应度就是算法选择的目标函数。  
  −
        第26行: 第24行:     
演化计算技术可以应用在在诸多问题领域中,并产生高度优化的解决方案,这使其在计算机科学中广受欢迎。演化计算存在许多变体和扩展,能适用于更具体的问题和数据结构。演化计算有时也被用在演化生物学中,作为一种电子实验程序来研究一般演化过程的共性特点。
 
演化计算技术可以应用在在诸多问题领域中,并产生高度优化的解决方案,这使其在计算机科学中广受欢迎。演化计算存在许多变体和扩展,能适用于更具体的问题和数据结构。演化计算有时也被用在演化生物学中,作为一种电子实验程序来研究一般演化过程的共性特点。
  −
  −
        第187行: 第182行:     
此外,根据计算理论的概念,生物有机体中的微进程从根本上来说是不完整的和不可判定的 ,这意味着细胞和计算机之间的类比不只仅仅只是一个粗略的比喻。
 
此外,根据计算理论的概念,生物有机体中的微进程从根本上来说是不完整的和不可判定的 ,这意味着细胞和计算机之间的类比不只仅仅只是一个粗略的比喻。
  −
  −
        第197行: 第189行:     
计算的类比也延伸到遗传系统和生物结构之间的关系,这通常被认为是揭示解释生命起源最紧迫的问题之一。
 
计算的类比也延伸到遗传系统和生物结构之间的关系,这通常被认为是揭示解释生命起源最紧迫的问题之一。
  −
       
370

个编辑

导航菜单