更改

跳到导航 跳到搜索
删除70字节 、 2021年2月7日 (日) 16:40
第63行: 第63行:       −
Notice, as per property of the [[Kullback–Leibler divergence]], that <math>I(X;Y)</math> is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when <math>X</math> and <math>Y</math> are independent (and hence observing <math>Y</math> tells you nothing about <math>X</math>). '''<font color="#32CD32">In general <math>I(X;Y)</math> is non-negative, it is a measure of the price for encoding <math>(X,Y)</math> as a pair of independent random variables, when in reality they are not.</font>'''
+
Notice, as per property of the [[Kullback–Leibler divergence]], that <math>I(X;Y)</math> is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when <math>X</math> and <math>Y</math> are independent (and hence observing <math>Y</math> tells you nothing about <math>X</math>). In general <math>I(X;Y)</math> is non-negative, it is a measure of the price for encoding <math>(X,Y)</math> as a pair of independent random variables, when in reality they are not.
   −
需要注意的是,根据KL散度的性质,当两个随机变量的联合分布与其分别的边缘分布的乘积相等时,如当<math>X</math>和<math>Y</math>是相互独立时(因此观察y不会得到x的信息),<math>I(X;Y)</math>等于零(因此已知<math>Y</math>的信息并不能得到任何关于<math>X</math>的信息)。'''<font color="#32CD32">一般来说,<math>I(X;Y)</math>是非负的,因为它是将<math>(X,Y)</math>作为一对独立随机变量来编码进而进行价值度量的,但实际上它们并不一定是非负的。</font>'''
+
需要注意的是,根据KL散度的性质,当两个随机变量的联合分布与其分别的边缘分布的乘积相等时,如当<math>X</math>和<math>Y</math>是相互独立时(因此观察y不会得到x的信息),<math>I(X;Y)</math>等于零(因此已知<math>Y</math>的信息并不能得到任何关于<math>X</math>的信息)。一般来说,<math>I(X;Y)</math>是非负的,因为它是将<math>(X,Y)</math>作为一对独立随机变量来编码进而进行价值度量的,但实际上它们并不一定是非负的。
    
== 关于离散分布的PMF In terms of PMFs for discrete distributions ==
 
== 关于离散分布的PMF In terms of PMFs for discrete distributions ==
99

个编辑

导航菜单