第3行: |
第3行: |
| <strong>Genetic algorithms</strong> are based on the classic view of a chromosome as a string of genes. R.A. Fisher used this view to found mathematical genetics, providing mathematical formula specifying the rate at which particular genes would spread through a population [[#fisher1958|(Fisher, 1958)]]. Key elements of Fisher’s formulation are: | | <strong>Genetic algorithms</strong> are based on the classic view of a chromosome as a string of genes. R.A. Fisher used this view to found mathematical genetics, providing mathematical formula specifying the rate at which particular genes would spread through a population [[#fisher1958|(Fisher, 1958)]]. Key elements of Fisher’s formulation are: |
| | | |
− | 遗传算法基于染色体作为一串基因的经典观点。使用这种观点找到了数学遗传学,提供了数学公式来指定特定基因在整个种群中的扩散速率(Fisher,1958)。 费舍尔公式化的关键要素是:
| + | 遗传算法的基础是“染色体是一串基因”这一经典观点。R.A. Fisher 使用这种观点建立了数学遗传学,提供了数学公式来说明特定基因在整个种群中的扩散速率(Fisher,1958)。 费舍尔公式化的关键要素是: |
| | | |
| * a specified set of alternatives (alleles) for each gene, thereby specifying the allowable strings of genes (the possible chromosomes), | | * a specified set of alternatives (alleles) for each gene, thereby specifying the allowable strings of genes (the possible chromosomes), |
第12行: |
第12行: |
| Natural selection, in this formulation, can be thought of as a procedure for searching through the set of possible individuals, the search space, to find individuals of progressively higher fitness. Even when a natural population consists of a single species – say the current generation of humans – there is considerable variation within that population. These variants constitute samples of the search space. | | Natural selection, in this formulation, can be thought of as a procedure for searching through the set of possible individuals, the search space, to find individuals of progressively higher fitness. Even when a natural population consists of a single species – say the current generation of humans – there is considerable variation within that population. These variants constitute samples of the search space. |
| | | |
− | 在这种表述中,自然选择可以被认为是一种用于搜索可能的个体集合,搜索空间,以找到具有更高适应度的个体的过程。 即使当自然种群仅由一个物种组成时(例如,当前这一代人类),该种群中也存在相当大的差异。 这些变体构成搜索空间的样本。
| + | 在这种表述中,自然选择可以被认为是一种用于搜索可能的个体集合,亦即搜索空间,以找到具有更高适应度的个体的过程。即使当自然种群仅由一个物种组成时(例如,当前这一代人类),该种群中也存在相当大的差异。 这些变体就构成搜索空间的所有样本。 |
| | | |
− | == Definition == | + | == 定义 == |
| A genetic algorithm (GA) is a generalized, computer-executable version of Fisher’s formulation [[#holland1995|(Holland J, 1995)]]. The generalizations consist of: | | A genetic algorithm (GA) is a generalized, computer-executable version of Fisher’s formulation [[#holland1995|(Holland J, 1995)]]. The generalizations consist of: |
| + | |
| + | 遗传算法(GA)是Fisher公式的一种通用的计算机程序版本。 概括包括: |
| | | |
| * concern with interaction of genes on a chromosome, rather than assuming alleles act independently of each other, and | | * concern with interaction of genes on a chromosome, rather than assuming alleles act independently of each other, and |