更改

跳到导航 跳到搜索
删除61,576字节 、 2021年5月30日 (日) 11:37
第255行: 第255行:     
===海洋的出现===
 
===海洋的出现===
  −
  −
Oceans may have appeared first in the Hadean Eon, as soon as 200 My after the Earth formed, in a hot, 100 C, reducing environment, and the pH of about 5.8 rose rapidly towards neutral.This scenario has found support from the dating of 4.404  Gyo zircon crystals from metamorphosed quartzite of Mount Narryer in the Western Australia Jack Hills of the Pilbara, which provide evidence that oceans and continental crust existed within 150 Ma of Earth's formation.Despite the likely increased volcanism and existence of many smaller tectonic "platelets," it has been suggested that between 4.4-4.3 Gyo, the Earth was a water world, with little if any continental crust, an extremely turbulent atmosphere and a hydrosphere subject to intense ultraviolet (UV) light, from a T Tauri stage Sun, cosmic radiation and continued bolide impacts.
      
海洋可能最早出现在冥古宙,即地球形成后的2亿年,在一个100 C的高温的还原性环境中,pH值约为5.8,迅速上升到中性。.<ref>{{cite journal |last1=Morse |first1=John W. |last2=MacKenzie |first2=Fred T. |author-link2=Fred T. Mackenzie (scientist) |year=1998 |title=Hadean Ocean Carbonate Geochemistry |journal=Aquatic Geochemistry |volume=4 |issue=3–4 |pages=301–319 |doi=10.1023/A:1009632230875 |bibcode=1998MinM...62.1027M |s2cid=129616933 }}</ref>这一假设已经得到了来自澳大利亚西部纳里尔山变质石英岩的4.404 Gyo锆石晶体的年代测定的支持。这一设想已经得到了来自澳大利亚西部的皮尔巴拉的杰克高地的纳瑞耶山的变质石英岩的44.04亿年前的锆石晶体的年代测定的支持,它提供了地球形成后1.5亿年前内存在海洋和大陆地壳的证据。<ref name="Wilde2001">{{cite journal |last1=Wilde |first1=Simon A. |last2=Valley |first2=John W. |last3=Peck |first3=William H. |last4=Graham |first4=Colin M. |date=11 January 2001 |title=Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4&nbsp;Gyr ago |url=http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |journal=[[Nature (journal)|Nature]] |volume=409 |issue=6817 |pages=175–178 |doi=10.1038/35051550 |pmid=11196637 |access-date=2015-06-03 |url-status=live |archive-url=https://web.archive.org/web/20150605132344/http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |archive-date=5 June 2015|bibcode=2001Natur.409..175W |s2cid=4319774 }}</ref>尽管可能增加了火山活动,并存在许多较小的构造 "板块",但有人认为,在44-43亿年之间,地球是一个水世界,几乎没有大陆地壳,大气层极度动荡,水圈受到来自T金牛座阶段的太阳的强烈的紫外线(UV)照射、宇宙辐射和持续的天体撞击。<ref name="rise.2006">{{cite journal |last1=Rosing |first1=Minik T. |last2=Bird |first2=Dennis K. |last3=Sleep |first3=Norman H. |last4=Glassley |first4=William |last5=Albarède |first5=Francis |author-link5=Francis Albarède |display-authors=3 |date=22 March 2006 |title=The rise of continents – An essay on the geologic consequences of photosynthesis |url= https://www.researchgate.net/publication/223066196|journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=232 |issue=2–4 |pages=99–113 |doi=10.1016/j.palaeo.2006.01.007  |access-date=2015-06-08 |url-status=live |archive-url=https://web.archive.org/web/20150714073656/http://www.researchgate.net/profile/Francis_Albarede/publication/223066196_The_rise_of_continentsAn_essay_on_the_geologic_consequences_of_photosynthesis/links/00b7d51766c442f58b000000.pdf |archive-date=14 July 2015|bibcode=2006PPP...232...99R }}</ref>由于地核和地幔之间的重力分选导致的内部加热会引起大量的地幔对流,这可能导致比现在存在的更小、更活跃的构造板块。
 
海洋可能最早出现在冥古宙,即地球形成后的2亿年,在一个100 C的高温的还原性环境中,pH值约为5.8,迅速上升到中性。.<ref>{{cite journal |last1=Morse |first1=John W. |last2=MacKenzie |first2=Fred T. |author-link2=Fred T. Mackenzie (scientist) |year=1998 |title=Hadean Ocean Carbonate Geochemistry |journal=Aquatic Geochemistry |volume=4 |issue=3–4 |pages=301–319 |doi=10.1023/A:1009632230875 |bibcode=1998MinM...62.1027M |s2cid=129616933 }}</ref>这一假设已经得到了来自澳大利亚西部纳里尔山变质石英岩的4.404 Gyo锆石晶体的年代测定的支持。这一设想已经得到了来自澳大利亚西部的皮尔巴拉的杰克高地的纳瑞耶山的变质石英岩的44.04亿年前的锆石晶体的年代测定的支持,它提供了地球形成后1.5亿年前内存在海洋和大陆地壳的证据。<ref name="Wilde2001">{{cite journal |last1=Wilde |first1=Simon A. |last2=Valley |first2=John W. |last3=Peck |first3=William H. |last4=Graham |first4=Colin M. |date=11 January 2001 |title=Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4&nbsp;Gyr ago |url=http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |journal=[[Nature (journal)|Nature]] |volume=409 |issue=6817 |pages=175–178 |doi=10.1038/35051550 |pmid=11196637 |access-date=2015-06-03 |url-status=live |archive-url=https://web.archive.org/web/20150605132344/http://www.geology.wisc.edu/~valley/zircons/Wilde2001Nature.pdf |archive-date=5 June 2015|bibcode=2001Natur.409..175W |s2cid=4319774 }}</ref>尽管可能增加了火山活动,并存在许多较小的构造 "板块",但有人认为,在44-43亿年之间,地球是一个水世界,几乎没有大陆地壳,大气层极度动荡,水圈受到来自T金牛座阶段的太阳的强烈的紫外线(UV)照射、宇宙辐射和持续的天体撞击。<ref name="rise.2006">{{cite journal |last1=Rosing |first1=Minik T. |last2=Bird |first2=Dennis K. |last3=Sleep |first3=Norman H. |last4=Glassley |first4=William |last5=Albarède |first5=Francis |author-link5=Francis Albarède |display-authors=3 |date=22 March 2006 |title=The rise of continents – An essay on the geologic consequences of photosynthesis |url= https://www.researchgate.net/publication/223066196|journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=232 |issue=2–4 |pages=99–113 |doi=10.1016/j.palaeo.2006.01.007  |access-date=2015-06-08 |url-status=live |archive-url=https://web.archive.org/web/20150714073656/http://www.researchgate.net/profile/Francis_Albarede/publication/223066196_The_rise_of_continentsAn_essay_on_the_geologic_consequences_of_photosynthesis/links/00b7d51766c442f58b000000.pdf |archive-date=14 July 2015|bibcode=2006PPP...232...99R }}</ref>由于地核和地幔之间的重力分选导致的内部加热会引起大量的地幔对流,这可能导致比现在存在的更小、更活跃的构造板块。
第273行: 第270行:  
这种毁灭性的环境事件之间的时间段,为早期环境中可能的生命起源提供了时间窗口。如果深海热液环境是生命起源的场所,那么自然发生可能早在40-42亿年前就发生了。如果地点在地球表面,那么自然发生只能发生在37-40亿年前之间。<ref>{{cite journal |last1=Maher |first1=Kevin A. |last2=Stevenson |first2=David J. |date=18 February 1988 |title=Impact frustration of the origin of life |journal=Nature |volume=331 |issue=6157 |pages=612–614 |bibcode=1988Natur.331..612M |doi=10.1038/331612a0 |pmid=11536595|s2cid=4284492 }}</ref>
 
这种毁灭性的环境事件之间的时间段,为早期环境中可能的生命起源提供了时间窗口。如果深海热液环境是生命起源的场所,那么自然发生可能早在40-42亿年前就发生了。如果地点在地球表面,那么自然发生只能发生在37-40亿年前之间。<ref>{{cite journal |last1=Maher |first1=Kevin A. |last2=Stevenson |first2=David J. |date=18 February 1988 |title=Impact frustration of the origin of life |journal=Nature |volume=331 |issue=6157 |pages=612–614 |bibcode=1988Natur.331..612M |doi=10.1038/331612a0 |pmid=11536595|s2cid=4284492 }}</ref>
   −
Estimates of the production of organics from these sources suggest that the [[Late Heavy Bombardment]] before 3.5&nbsp;Ga within the early atmosphere made available quantities of organics comparable to those produced by terrestrial sources.
+
 
    
对这些来源的有机物的产生的估计表明,在35亿年前之前,早期大气层内的晚期重型轰炸使可获得的有机物的数量与陆地来源产生的有机物数量相当。<ref>{{cite journal |last1=Chyba |first1=Christopher |authorlink=Christopher Chyba |last2=Sagan |first2=Carl |authorlink2=Carl Sagan |date=9 January 1992 |title=Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life |journal=Nature |volume=355 |issue=6356 |pages=125–132 |bibcode=1992Natur.355..125C |doi=10.1038/355125a0 |pmid=11538392|s2cid=4346044 }}</ref><ref>{{cite journal |last1=Furukawa |first1=Yoshihiro |last2=Sekine |first2=Toshimori |last3=Oba |first3=Masahiro |last4=Kakegawa |first4=Takeshi |last5=Nakazawa |first5=Hiromoto |display-authors=3 |date=January 2009 |title=Biomolecule formation by oceanic impacts on early Earth |journal=Nature Geoscience |volume=2 |issue=1 |pages=62–66 |bibcode=2009NatGe...2...62F |doi=10.1038/NGEO383}}</ref>
 
对这些来源的有机物的产生的估计表明,在35亿年前之前,早期大气层内的晚期重型轰炸使可获得的有机物的数量与陆地来源产生的有机物数量相当。<ref>{{cite journal |last1=Chyba |first1=Christopher |authorlink=Christopher Chyba |last2=Sagan |first2=Carl |authorlink2=Carl Sagan |date=9 January 1992 |title=Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life |journal=Nature |volume=355 |issue=6356 |pages=125–132 |bibcode=1992Natur.355..125C |doi=10.1038/355125a0 |pmid=11538392|s2cid=4346044 }}</ref><ref>{{cite journal |last1=Furukawa |first1=Yoshihiro |last2=Sekine |first2=Toshimori |last3=Oba |first3=Masahiro |last4=Kakegawa |first4=Takeshi |last5=Nakazawa |first5=Hiromoto |display-authors=3 |date=January 2009 |title=Biomolecule formation by oceanic impacts on early Earth |journal=Nature Geoscience |volume=2 |issue=1 |pages=62–66 |bibcode=2009NatGe...2...62F |doi=10.1038/NGEO383}}</ref>
第299行: 第296行:  
== 20世纪60年代以前的概念演变史:生物学 Conceptual history until the 1960s: biology ==
 
== 20世纪60年代以前的概念演变史:生物学 Conceptual history until the 1960s: biology ==
   −
=== 泛种论 Panspermia ===
+
=== 泛种论===
泛种论
  −
{{Main|Panspermia}}
  −
 
  −
Panspermia is the [[hypothesis]] that [[life]] exists throughout the [[universe]], distributed by [[meteoroids]], [[asteroids]], [[comets]]<ref name="cometary panspermia">
      
泛种论是一种假说,即生命存在于整个宇宙,由流星体、小行星、彗星分布。<ref name="cometary panspermia">
 
泛种论是一种假说,即生命存在于整个宇宙,由流星体、小行星、彗星分布。<ref name="cometary panspermia">
   −
The panspermia hypothesis does not attempt to explain how life first originated but merely shifts the origin to another planet or a comet. The advantage of an extraterrestrial origin of primitive life is that life is not required to have formed on each planet it occurs on, but rather in a single location, and then spread about the [[galaxy]] to other star systems via cometary and/or meteorite impact.<ref name="NYT-20160912">{{cite news |last=Chang |first=Kenneth |title=Visions of Life on Mars in Earth's Depths |url=https://www.nytimes.com/2016/09/13/science/south-african-mine-life-on-mars.html |date=12 September 2016 |work=[[The New York Times]] |accessdate=12 September 2016 |url-status=live |archiveurl=https://web.archive.org/web/20160912225220/http://www.nytimes.com/2016/09/13/science/south-african-mine-life-on-mars.html |archivedate=12 September 2016}}</ref>
     −
Evidence for the panspermia hypothesis is scant, but it finds some support in studies of [[Martian meteorite]]s found in [[Antarctica]] and in studies of [[extremophile]] microbes' survival in outer space tests.<ref>{{cite journal |last=Clark |first=Stuart |date=25 September 2002 |title=Tough Earth bug may be from Mars |url=https://www.newscientist.com/article/dn2844 |journal=New Scientist |accessdate=2015-06-21 |url-status=live |archiveurl=https://web.archive.org/web/20141202003401/http://www.newscientist.com/article/dn2844 |archivedate=2 December 2014}}</ref><ref name="Gerda Horneck">{{cite journal |last1=Horneck |first1=Gerda |last2=Klaus |first2=David M. |last3=Mancinelli |first3=Rocco L. |date=March 2010 |title=Space Microbiology |journal=[[Microbiology and Molecular Biology Reviews]] |volume=74 |issue=1 |pages=121–156 |doi=10.1128/MMBR.00016-09  |pmc=2832349 |pmid=20197502|bibcode=2010MMBR...74..121H }}</ref><ref name="Rabbow">{{cite journal |last1=Rabbow |first1=Elke |last2=Horneck |first2=Gerda |last3=Rettberg |first3=Petra |last4=Schott |first4=Jobst-Ulrich |last5=Panitz |first5=Corinna |last6=L'Afflitto |first6=Andrea |last7=von Heise-Rotenburg |first7=Ralf |last8=Willnecker |first8=Reiner |last9=Baglioni |first9=Pietro |last10=Hatton |first10=Jason |last11=Dettmann |first11=Jan |last12=Demets |first12=René |last13=Reitz |first13=Günther |display-authors=3 |date=December 2009 |title=EXPOSE, an Astrobiological Exposure Facility on the International Space Station – from Proposal to Flight |journal=Origins of Life and Evolution of Biospheres |volume=39 |issue=6 |pages=581–598 |bibcode=2009OLEB...39..581R |doi=10.1007/s11084-009-9173-6|pmid=19629743|s2cid=19749414 }}</ref><ref>{{cite journal |last1=Onofri |first1=Silvano |last2=de la Torre |first2=Rosa |last3=de Vera |first3=Jean-Pierre |last4=Ott |first4=Sieglinde |last5=Zucconi |first5=Laura |last6=Selbmann |first6=Laura |last7=Scalzi |first7=Giuliano |last8=Venkateswaran |first8=Kasthuri J. |last9=Rabbow |first9=Elke |last10=Sánchez Iñigo |first10=Francisco J. |last11=Horneck |first11=Gerda |display-authors=3 |date=May 2012 |title=Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space |journal=Astrobiology |volume=12 |issue=5 |pages=508–516 |bibcode=2012AsBio..12..508O |doi=10.1089/ast.2011.0736 |pmid=22680696}}</ref>
+
泛种论假说并不试图解释生命最初是如何起源的,而只是将起源转移到另一颗行星或彗星上。原始生命的地外起源的优点是,生命不需要在它出现的每个星球上形成,而是在一个单一的位置,然后通过彗星和/或陨石撞击在银河系周围传播到其他恒星系统。<ref name="NYT-20160912">{{cite news |last=Chang |first=Kenneth |title=Visions of Life on Mars in Earth's Depths |url=https://www.nytimes.com/2016/09/13/science/south-african-mine-life-on-mars.html |date=12 September 2016 |work=[[The New York Times]] |accessdate=12 September 2016 |url-status=live |archiveurl=https://web.archive.org/web/20160912225220/http://www.nytimes.com/2016/09/13/science/south-african-mine-life-on-mars.html |archivedate=12 September 2016}}</ref> 泛种论假说的证据很少,但它在对南极洲发现的火星陨石的研究和对极端微生物在外太空测试中生存的研究中找到了一些支持。<ref>{{cite journal |last=Clark |first=Stuart |date=25 September 2002 |title=Tough Earth bug may be from Mars |url=https://www.newscientist.com/article/dn2844 |journal=New Scientist |accessdate=2015-06-21 |url-status=live |archiveurl=https://web.archive.org/web/20141202003401/http://www.newscientist.com/article/dn2844 |archivedate=2 December 2014}}</ref><ref name="Gerda Horneck">{{cite journal |last1=Horneck |first1=Gerda |last2=Klaus |first2=David M. |last3=Mancinelli |first3=Rocco L. |date=March 2010 |title=Space Microbiology |journal=[[Microbiology and Molecular Biology Reviews]] |volume=74 |issue=1 |pages=121–156 |doi=10.1128/MMBR.00016-09  |pmc=2832349 |pmid=20197502|bibcode=2010MMBR...74..121H }}</ref><ref name="Rabbow">{{cite journal |last1=Rabbow |first1=Elke |last2=Horneck |first2=Gerda |last3=Rettberg |first3=Petra |last4=Schott |first4=Jobst-Ulrich |last5=Panitz |first5=Corinna |last6=L'Afflitto |first6=Andrea |last7=von Heise-Rotenburg |first7=Ralf |last8=Willnecker |first8=Reiner |last9=Baglioni |first9=Pietro |last10=Hatton |first10=Jason |last11=Dettmann |first11=Jan |last12=Demets |first12=René |last13=Reitz |first13=Günther |display-authors=3 |date=December 2009 |title=EXPOSE, an Astrobiological Exposure Facility on the International Space Station – from Proposal to Flight |journal=Origins of Life and Evolution of Biospheres |volume=39 |issue=6 |pages=581–598 |bibcode=2009OLEB...39..581R |doi=10.1007/s11084-009-9173-6|pmid=19629743|s2cid=19749414 }}</ref><ref>{{cite journal |last1=Onofri |first1=Silvano |last2=de la Torre |first2=Rosa |last3=de Vera |first3=Jean-Pierre |last4=Ott |first4=Sieglinde |last5=Zucconi |first5=Laura |last6=Selbmann |first6=Laura |last7=Scalzi |first7=Giuliano |last8=Venkateswaran |first8=Kasthuri J. |last9=Rabbow |first9=Elke |last10=Sánchez Iñigo |first10=Francisco J. |last11=Horneck |first11=Gerda |display-authors=3 |date=May 2012 |title=Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space |journal=Astrobiology |volume=12 |issue=5 |pages=508–516 |bibcode=2012AsBio..12..508O |doi=10.1089/ast.2011.0736 |pmid=22680696}}</ref>
   −
泛种论假说并不试图解释生命最初是如何起源的,而只是将起源转移到另一颗行星或彗星上。原始生命的地外起源的优点是,生命不需要在它出现的每个星球上形成,而是在一个单一的位置,然后通过彗星和/或陨石撞击在银河系周围传播到其他恒星系统。泛种论假说的证据很少,但它在对南极洲发现的火星陨石的研究和对极端微生物在外太空测试中生存的研究中找到了一些支持。
     −
In August 2020, scientists reported that [[bacteria]] from Earth, particularly ''[[Deinococcus radiodurans]]'', which is highly resistant to [[environmental hazard]]s, were found to survive for three years in [[outer space]], based on studies conducted on the [[International Space Station]].<ref name="CNN-20200826">{{cite news |last=Strickland |first=Ashley |title=Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study |url=https://www.cnn.com/2020/08/26/world/earth-mars-bacteria-space-scn/index.html |date=26 August 2020 |work=[[CNN News]] |accessdate=26 August 2020 }}</ref><ref name="FM-20200826">{{cite journal |author=Kawaguchi, Yuko |display-authors=et al. |title=DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space |date=26 August 2020 |journal=[[Frontiers in Microbiology]] |volume=11 |page=2050 |doi=10.3389/fmicb.2020.02050 |pmid=32983036 |pmc=7479814 |s2cid=221300151 |doi-access=free }}</ref>
+
2020年8月,科学家报告称,根据在国际空间站上进行的研究,发现来自地球的细菌,特别是对环境危害有很强抵抗力的耐辐射球菌,可以在外太空存活3年。<ref name="CNN-20200826">{{cite news |last=Strickland |first=Ashley |title=Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study |url=https://www.cnn.com/2020/08/26/world/earth-mars-bacteria-space-scn/index.html |date=26 August 2020 |work=[[CNN News]] |accessdate=26 August 2020 }}</ref><ref name="FM-20200826">{{cite journal |author=Kawaguchi, Yuko |display-authors=et al. |title=DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space |date=26 August 2020 |journal=[[Frontiers in Microbiology]] |volume=11 |page=2050 |doi=10.3389/fmicb.2020.02050 |pmid=32983036 |pmc=7479814 |s2cid=221300151 |doi-access=free }}</ref>
   −
2020年8月,科学家报告称,根据在国际空间站上进行的研究,发现来自地球的细菌,特别是对环境危害有很强抵抗力的耐辐射球菌,可以在外太空存活3年。
     −
====Origin of life posited directly after the Big Bang and have spread over the entire Universe====
     −
生命起源于宇宙大爆炸之后,并已遍布整个宇宙
+
====生命起源于宇宙大爆炸之后,并已遍布整个宇宙====
   −
An extreme speculation is that the [[biochemistry]] of life could have begun as early as 17 My (million years) after the [[Big Bang]], during a [[Chronology of the universe#Speculative "habitable epoch"|habitable epoch]], and that life may exist throughout the [[universe]].<ref name="IJA-2014October_ARXIV-20131202">{{cite journal|last=Loeb|first=Abraham|authorlink=Abraham (Avi) Loeb|date=2014|title=The habitable epoch of the early universe|journal=[[International Journal of Astrobiology]]|volume=13|issue=4|pages=337–339|arxiv=1312.0613|bibcode=2014IJAsB..13..337L|citeseerx=10.1.1.748.4820|doi=10.1017/S1473550414000196|s2cid=2777386}}</ref><ref name="NYT-20141202">{{cite news|url=https://www.nytimes.com/2014/12/02/science/avi-loeb-ponders-the-early-universe-nature-and-life.html|title=Much-Discussed Views That Go Way Back|last=Dreifus|first=Claudia|date=2 December 2014|newspaper=[[The New York Times]]|accessdate=2014-12-03|archiveurl=https://web.archive.org/web/20141203010758/http://www.nytimes.com/2014/12/02/science/avi-loeb-ponders-the-early-universe-nature-and-life.html|archivedate=3 December 2014|url-status=live|location=New York|page=D2|authorlink=Claudia Dreifus}}</ref>
+
一种极端的推测是生命的生物化学可能早在大爆炸后1700万年就开始了,在一个适宜居住的时期,生命可能存在于整个宇宙中。<ref name="IJA-2014October_ARXIV-20131202">{{cite journal|last=Loeb|first=Abraham|authorlink=Abraham (Avi) Loeb|date=2014|title=The habitable epoch of the early universe|journal=[[International Journal of Astrobiology]]|volume=13|issue=4|pages=337–339|arxiv=1312.0613|bibcode=2014IJAsB..13..337L|citeseerx=10.1.1.748.4820|doi=10.1017/S1473550414000196|s2cid=2777386}}</ref><ref name="NYT-20141202">{{cite news|url=https://www.nytimes.com/2014/12/02/science/avi-loeb-ponders-the-early-universe-nature-and-life.html|title=Much-Discussed Views That Go Way Back|last=Dreifus|first=Claudia|date=2 December 2014|newspaper=[[The New York Times]]|accessdate=2014-12-03|archiveurl=https://web.archive.org/web/20141203010758/http://www.nytimes.com/2014/12/02/science/avi-loeb-ponders-the-early-universe-nature-and-life.html|archivedate=3 December 2014|url-status=live|location=New York|page=D2|authorlink=Claudia Dreifus}}</ref>
   −
一种极端的推测是生命的生物化学可能早在大爆炸后1700万年就开始了,在一个适宜居住的时期,生命可能存在于整个宇宙中。
     −
====Panspermia by life brought from Mars to Earth====
     −
生命从火星带入地球的泛种论
+
====生命从火星带入地球的泛种论====
   −
Carl Zimmer has speculated that the chemical conditions, including the presence of [[boron]], [[molybdenum]] and oxygen needed for the initial production of RNA, may have been better on early Mars than on early Earth.<ref name="NYT-20130912">{{cite news |last=Zimmer |first=Carl |date=12 September 2013 |title=A Far-Flung Possibility for the Origin of Life |url=https://www.nytimes.com/2013/09/12/science/space/a-far-flung-possibility-for-the-origin-of-life.html |newspaper=The New York Times |location=New York |accessdate=2015-06-15 |url-status=live |archiveurl=https://web.archive.org/web/20150708122622/http://www.nytimes.com/2013/09/12/science/space/a-far-flung-possibility-for-the-origin-of-life.html |archivedate=8 July 2015}}</ref><ref name="NS-20130829">{{cite journal |last=Webb |first=Richard |date=29 August 2013 |title=Primordial broth of life was a dry Martian cup-a-soup |url=https://www.newscientist.com/article/dn24120-primordial-broth-of-life-was-a-dry-martian-cupasoup.html |journal=New Scientist  |accessdate=2015-06-16 |url-status=live |archiveurl=https://web.archive.org/web/20150424181341/http://www.newscientist.com/article/dn24120-primordial-broth-of-life-was-a-dry-martian-cupasoup.html |archivedate=24 April 2015}}</ref><ref>{{cite journal |author1=Wentao Ma |author2=Chunwu Yu |author3=Wentao Zhang |author4=Jiming Hu |display-authors=3 |date=November 2007 |title=Nucleotide synthetase ribozymes may have emerged first in the RNA world |journal=[[RNA (journal)|RNA]] |volume=13 |issue=11 |pages=2012–2019 |doi=10.1261/rna.658507  |pmc=2040096 |pmid=17878321}}</ref> If so, life-suitable molecules originating on Mars may have later migrated to Earth via [[Impact event|meteor ejections]].
+
卡尔·齐默 Carl Zimmer推测,火星早期的化学条件,包括最初生成RNA所需的硼,钼和氧的存在,可能比地球早期更好。<ref name="NYT-20130912">{{cite news |last=Zimmer |first=Carl |date=12 September 2013 |title=A Far-Flung Possibility for the Origin of Life |url=https://www.nytimes.com/2013/09/12/science/space/a-far-flung-possibility-for-the-origin-of-life.html |newspaper=The New York Times |location=New York |accessdate=2015-06-15 |url-status=live |archiveurl=https://web.archive.org/web/20150708122622/http://www.nytimes.com/2013/09/12/science/space/a-far-flung-possibility-for-the-origin-of-life.html |archivedate=8 July 2015}}</ref><ref name="NS-20130829">{{cite journal |last=Webb |first=Richard |date=29 August 2013 |title=Primordial broth of life was a dry Martian cup-a-soup |url=https://www.newscientist.com/article/dn24120-primordial-broth-of-life-was-a-dry-martian-cupasoup.html |journal=New Scientist  |accessdate=2015-06-16 |url-status=live |archiveurl=https://web.archive.org/web/20150424181341/http://www.newscientist.com/article/dn24120-primordial-broth-of-life-was-a-dry-martian-cupasoup.html |archivedate=24 April 2015}}</ref><ref>{{cite journal |author1=Wentao Ma |author2=Chunwu Yu |author3=Wentao Zhang |author4=Jiming Hu |display-authors=3 |date=November 2007 |title=Nucleotide synthetase ribozymes may have emerged first in the RNA world |journal=[[RNA (journal)|RNA]] |volume=13 |issue=11 |pages=2012–2019 |doi=10.1261/rna.658507  |pmc=2040096 |pmid=17878321}}</ref>如果是这样,起源于火星的适合生命的分子可能后来会通过流星喷射迁移到地球。
   −
卡尔·齐默Carl Zimmer推测,火星早期的化学条件,包括最初生成RNA所需的硼,钼和氧的存在,可能比地球早期更好。如果是这样,起源于火星的适合生命的分子可能后来会通过流星喷射迁移到地球。
+
=== 自然发生 ===
   −
=== Spontaneous generation ===
+
====19世纪之前,人们普遍接受自然发生论====
自然发生
  −
====General acceptance of spontaneous generation until the 19th century====
     −
19世纪之前,人们普遍接受自然发生论。
+
传统宗教把生命的起源归结为超自然的神灵,他们创造了自然界。“自然发生”,是第一个从非生命中产生生命的自然主义理论,它可以追溯到Aristotle和古希腊哲学,并在西方学术界一直得到支持,直到19世纪。<ref>{{harvnb|Sheldon|2005}}</ref>"自然发生”的古典观念认为,某些 "低等 "或 "害虫 "动物是由腐烂的有机物质产生的。根据Aristotle的观点,很容易观察到蚜虫从植物上的露水中产生,苍蝇从腐烂的物质中产生,老鼠从肮脏的干草中产生,鳄鱼从腐烂的沉木中产生,等等。<ref>{{harvnb|Lennox|2001|pp=229–258}}</ref> A related theory was ''heterogenesis'': that some forms of life could arise from different forms (e.g. bees from flowers).<ref>{{harvnb|Vartanian|1973|pp=307–312}}</ref>一个相关的理论是异生论:某些生命形式可以从不同的形式中产生(如蜜蜂从花中产生)。现代科学家约翰·德斯蒙德·贝纳尔John Desmond Bernal说,这种理论的基本思想是生命是作为偶然事件的结果而不断产生的。<ref name="Bernal 1967">{{harvnb|Bernal|1967}}</ref>
   −
{{Main|Spontaneous generation}}
  −
  −
Traditional religion attributed the origin of life to supernatural deities who created the natural world. ''Spontaneous generation,'' the first naturalistic theory of life arising from non-life, goes back to [[Aristotle]] and [[ancient Greek philosophy]], and continued to have support in Western scholarship until the 19th century.<ref>{{harvnb|Sheldon|2005}}</ref> Classical notions of spontaneous generation held that certain "lower" or "vermin" animals are generated by decaying organic substances. According to Aristotle, it was readily observable that [[aphid]]s arise from dew on plants, [[fly|flies]] from putrid matter, mice from dirty hay, crocodiles from rotting sunken logs, and so on.<ref>{{harvnb|Lennox|2001|pp=229–258}}</ref> A related theory was ''heterogenesis'': that some forms of life could arise from different forms (e.g. bees from flowers).<ref>{{harvnb|Vartanian|1973|pp=307–312}}</ref> The modern scientist [[John Desmond Bernal|John Bernal]] said that the basic idea of such theories was that life was continuously created as a result of chance events.<ref name="Bernal 1967">{{harvnb|Bernal|1967}}</ref>
  −
  −
传统宗教把生命的起源归结为超自然的神灵,他们创造了自然界。“自然发生”,是第一个从非生命中产生生命的自然主义理论,它可以追溯到Aristotle和古希腊哲学,并在西方学术界一直得到支持,直到19世纪。"自然发生”的古典观念认为,某些 "低等 "或 "害虫 "动物是由腐烂的有机物质产生的。根据Aristotle的观点,很容易观察到蚜虫从植物上的露水中产生,苍蝇从腐烂的物质中产生,老鼠从肮脏的干草中产生,鳄鱼从腐烂的沉木中产生,等等。一个相关的理论是异生论:某些生命形式可以从不同的形式中产生(如蜜蜂从花中产生)。现代科学家约翰·德斯蒙德·贝纳尔John Desmond Bernal说,这种理论的基本思想是生命是作为偶然事件的结果而不断产生的。
  −
  −
In the 17th century, people began to question such assumptions. In 1646, [[Sir Thomas Browne|Thomas Browne]] published his ''[[Pseudodoxia Epidemica]]'' (subtitled ''Enquiries into Very many Received Tenets, and commonly Presumed Truths''), which was an attack on false beliefs and "vulgar errors." His contemporary, [[Alexander Ross (writer)|Alexander Ross]], erroneously refuted him, stating:
  −
< blockquote > To question this [spontaneous generation], is to question Reason, Sense, and Experience: If he doubts of this, let him go to ''[[Egypt|Ægypt]]'', and there he will find the fields swarming with mice begot of the mud of ''[[Nile|Nylus]]'', to the great calamity of the Inhabitants.<ref>{{cite journal |last=Balme |first=D.M. |authorlink=David Mowbray Balme |year=1962 |title=Development of Biology in Aristotle and Theophrastus: Theory of Spontaneous Generation |journal=[[Phronesis (journal)|Phronesis]] |volume=7 |issue=1–2 |pages=91–104 |doi=10.1163/156852862X00052}}</ref><ref>{{harvnb|Ross|1652}}</ref>< /blockquote >
      
在17世纪,人们开始质疑这些假设。1646年,托马斯·布朗爵士 Sir Thomas Browne出版了他的《伪传染病》(副标题为“对许多公认的原则和通常假定的真理的询问”),该书攻击了错误的信念和“庸俗的错误”。与他同时代的亚历山大·罗斯 Alexander Ross错误地驳斥了他,称:
 
在17世纪,人们开始质疑这些假设。1646年,托马斯·布朗爵士 Sir Thomas Browne出版了他的《伪传染病》(副标题为“对许多公认的原则和通常假定的真理的询问”),该书攻击了错误的信念和“庸俗的错误”。与他同时代的亚历山大·罗斯 Alexander Ross错误地驳斥了他,称:
   −
< blockquote >  
+
<blockquote>
 +
To question this [spontaneous generation], is to question Reason, Sense, and Experience: If he doubts of this, let him go to ''[[Egypt|Ægypt]]'', and there he will find the fields swarming with mice begot of the mud of ''[[Nile|Nylus]]'', to the great calamity of the Inhabitants.<ref>{{cite journal |last=Balme |first=D.M. |authorlink=David Mowbray Balme |year=1962 |title=Development of Biology in Aristotle and Theophrastus: Theory of Spontaneous Generation |journal=[[Phronesis (journal)|Phronesis]] |volume=7 |issue=1–2 |pages=91–104 |doi=10.1163/156852862X00052}}</ref><ref>{{harvnb|Ross|1652}}</ref>
 
质疑这个自然发生,就是质疑理性、感觉和经验。如果他怀疑这一点,让他去埃及, 在那里,他将会发现田野里到处都是由尼罗斯的泥土生出的老鼠,给当地居民带来了巨大的灾难。
 
质疑这个自然发生,就是质疑理性、感觉和经验。如果他怀疑这一点,让他去埃及, 在那里,他将会发现田野里到处都是由尼罗斯的泥土生出的老鼠,给当地居民带来了巨大的灾难。
< /blockquote >  
+
</blockquote>  
   −
[[File:Anton van Leeuwenhoek.png|thumb|upright|Antonie van Leeuwenhoek]]
+
[[File:Anton van Leeuwenhoek.png|thumb|upright|安东尼·范·列文虎克 Antonie van Leeuwenhoek]]
   −
安东尼·范·列文虎克
+
1665年,罗伯特·胡克Robert Hooke发表了第一本微生物的图画。1676年,安东尼·范·列文虎克(Antonie van Leeuwenhoek)紧随其后,他绘制并描述了现在被认为是原生动物和细菌的微生物。<ref>{{harvnb|Dobell|1960}}</ref> 许多人认为微生物的存在是支持自然发生的证据,因为微生物对于有性生殖来说似乎过于简单,而通过细胞分裂的无性生殖尚未被观察到。Van Leeuwenhoek对当时常见的跳蚤和虱子可能由腐烂作用自发产生,以及青蛙同样可能由粘液产生的观点提出了异议。他利用广泛的实验,从密封和开放的肉孵化以及对昆虫繁殖的仔细研究,到1680年代,他确信自然发生是不正确的。<ref>{{harvnb|Bondeson|1999}}</ref>
   −
In 1665, [[Robert Hooke]] published the first drawings of a [[microorganism]]. Hooke was followed in 1676 by [[Antonie van Leeuwenhoek]], who drew and described microorganisms that are now thought to have been [[protozoa]] and [[bacteria]].<ref>{{harvnb|Dobell|1960}}</ref> Many felt the existence of microorganisms was evidence in support of spontaneous generation, since microorganisms seemed too simplistic for [[sexual reproduction]], and [[asexual reproduction]] through [[mitosis|cell division]] had not yet been observed. Van Leeuwenhoek took issue with the ideas common at the time that fleas and lice could spontaneously result from [[putrefaction]], and that frogs could likewise arise from slime. Using a broad range of experiments ranging from sealed and open meat incubation and the close study of insect reproduction he became, by the 1680s, convinced that spontaneous generation was incorrect.<ref>{{harvnb|Bondeson|1999}}</ref>
     −
1665年,罗伯特·胡克Robert Hooke发表了第一本微生物的图画。1676年,安东尼·范·列文虎克(Antonie van Leeuwenhoek)紧随其后,他绘制并描述了现在被认为是原生动物和细菌的微生物。许多人认为微生物的存在是支持自然发生的证据,因为微生物对于有性生殖来说似乎过于简单,而通过细胞分裂的无性生殖尚未被观察到。Van Leeuwenhoek对当时常见的跳蚤和虱子可能由腐烂作用自发产生,以及青蛙同样可能由粘液产生的观点提出了异议。他利用广泛的实验,从密封和开放的肉孵化以及对昆虫繁殖的仔细研究,到1680年代,他确信自然发生是不正确的。
+
第一个反对自然发生的实验证据是在1668年,当时弗朗西斯科·雷迪 Francesco Redi表明,当阻止苍蝇产卵时,肉中不会出现蛆虫。人们逐渐发现,至少在所有高等和易见生物的情况下,以前关于自发生成的观点是错误的。另一种假设是“生源论”:每个生物都来自一个已经存在的生物(“ omne vivum ex ovo”,拉丁语的意思是“每个生物来自于一个蛋”)。<ref name=lev>{{cite web |vauthors=Levine R, Evers C |title=The Slow Death of Spontaneous Generation (1668-1859) |url=http://www.accessexcellence.org/RC/AB/BC/Spontaneous_Generation.php |accessdate=18 April 2013 |url-status=dead |archiveurl=https://web.archive.org/web/20080426191204/http://www.accessexcellence.org/RC/AB/BC/Spontaneous_Generation.php |archivedate=26 April 2008 }}</ref> 1768年,拉扎罗·斯帕兰扎尼 Lazzaro Spallanzani证明了空气中存在微生物,并且可以通过煮沸杀死。1861年,路易·巴斯德 Louis Pasteur进行了一系列实验,证明细菌和真菌等生物在无菌、营养丰富的培养基中不会自发出现,只能通过从外部入侵出现。
   −
The first experimental evidence against spontaneous generation came in 1668 when [[Francesco Redi]] showed that no [[maggot]]s appeared in meat when flies were prevented from laying eggs. It was gradually shown that, at least in the case of all the higher and readily visible organisms, the previous sentiment regarding spontaneous generation was false. The alternative hypothesis was ''[[biogenesis]]'': that every living thing came from a pre-existing living thing (''omne vivum ex ovo'', Latin for "every living thing from an egg").<ref name=lev>{{cite web |vauthors=Levine R, Evers C |title=The Slow Death of Spontaneous Generation (1668-1859) |url=http://www.accessexcellence.org/RC/AB/BC/Spontaneous_Generation.php |accessdate=18 April 2013 |url-status=dead |archiveurl=https://web.archive.org/web/20080426191204/http://www.accessexcellence.org/RC/AB/BC/Spontaneous_Generation.php |archivedate=26 April 2008 }}</ref> In 1768, [[Lazzaro Spallanzani]] demonstrated that [[microorganism|microbes]] were present in the air, and could be killed by boiling. In 1861, [[Louis Pasteur]] performed a series of experiments that demonstrated that organisms such as bacteria and fungi do not spontaneously appear in sterile, nutrient-rich media, but could only appear by invasion from without.
+
====自然发生论在19世纪被认为是不成立的====
 +
[[File:Louis Pasteur, foto av Paul Nadar, Crisco edit.jpg|thumb|upright|left|路易斯·巴斯德 Louis Pasteur]]
 +
[[File:Darwin restored2.jpg|thumb|upright|alt=Head and shoulders portrait, increasingly bald with rather uneven bushy white eyebrows and beard, his wrinkled forehead suggesting a puzzled frown|查尔斯·达尔文 Charles Darwin,1879年]]
   −
第一个反对自然发生的实验证据是在1668年,当时弗朗西斯科·雷迪 Francesco Redi表明,当阻止苍蝇产卵时,肉中不会出现蛆虫。人们逐渐发现,至少在所有高等和易见生物的情况下,以前关于自发生成的观点是错误的。另一种假设是“生源论”:每个生物都来自一个已经存在的生物(“ omne vivum ex ovo”,拉丁语的意思是“每个生物来自于一个蛋”)。1768年,拉扎罗·斯帕兰扎尼(Lazzaro Spallanzani)证明了空气中存在微生物,并且可以通过煮沸杀死。1861年,路易·巴斯德 Louis Pasteur进行了一系列实验,证明细菌和真菌等生物在无菌、营养丰富的培养基中不会自发出现,只能通过从外部入侵出现。
  −
  −
====Spontaneous generation considered disproven in the 19th century====
  −
  −
自然发生论在19世纪被认为是不成立的。
  −
  −
[[File:Louis Pasteur, foto av Paul Nadar, Crisco edit.jpg|thumb|upright|left|Louis Pasteur]]
  −
  −
路易斯·巴斯德(Louis Pasteur)
  −
  −
[[File:Darwin restored2.jpg|thumb|upright|alt=Head and shoulders portrait, increasingly bald with rather uneven bushy white eyebrows and beard, his wrinkled forehead suggesting a puzzled frown|[[Charles Darwin]] in 1879]]
  −
  −
查尔斯·达尔文 Charles Darwin(1879年)
  −
  −
By the middle of the 19th century, biogenesis had accumulated so much evidence in support that the alternative theory of spontaneous generation had been effectively disproven. [[Louis Pasteur|Pasteur]] remarked, about a finding of his in 1864 which he considered definitive, < blockquote >Never will the doctrine of spontaneous generation recover from the mortal blow struck by this simple experiment.<ref>{{harvnb|Oparin|1953|p=196}}</ref><ref name="Tyndall Fragments2">{{harvnb|Tyndall|1905|loc=IV, XII (1876), XIII (1878)}}</ref> < /blockquote >gave a mechanism by which life diversified from a few simple organisms to a variety of to complex forms. Today, scientists agree that all current life descends from earlier life, which has become progressively more complex and diverse through [[Charles Darwin]]'s mechanism of [[evolution]] by [[natural selection]].
  −
  −
Darwin wrote to Hooker in 1863 stating that, < blockquote >It is mere rubbish, thinking at present of the origin of life; one might as well think of the origin of matter.< /blockquote > In ''[[On the Origin of Species]]'', he had referred to life having been "created", by which he "really meant 'appeared' by some wholly unknown process", but had soon regretted using the Old Testament term "creation".{{Citation needed|date=July 2020}}
      
到19世纪中叶,生源论已经积累了大量的证据,以至于自然发生的替代理论已经被有效地否定。Pasteur评论道,他在1864年的一项发现被他认为是决定性的:
 
到19世纪中叶,生源论已经积累了大量的证据,以至于自然发生的替代理论已经被有效地否定。Pasteur评论道,他在1864年的一项发现被他认为是决定性的:
    
< blockquote >
 
< blockquote >
自然发生的学说永远不会从这个简单的实验所带来的致命打击中恢复过来。
+
Never will the doctrine of spontaneous generation recover from the mortal blow struck by this simple experiment.
 +
 
 +
自然发生的学说永远不会从这个简单的实验所带来的致命打击中恢复过来。<ref>{{harvnb|Oparin|1953|p=196}}</ref><ref name="Tyndall Fragments2">{{harvnb|Tyndall|1905|loc=IV, XII (1876), XIII (1878)}}</ref>
 
< blockquote >
 
< blockquote >
    
实验给出了一个机制,通过这个机制,生命从几个简单的生物体多样化到各种复杂的形式。今天,科学家们一致认为,目前所有的生命都是早期生命的后裔,而早期生命通过Charles Darwin的自然选择进化机制,逐渐变得更加复杂和多样化。Darwin在1863年给Hooker写信指出:
 
实验给出了一个机制,通过这个机制,生命从几个简单的生物体多样化到各种复杂的形式。今天,科学家们一致认为,目前所有的生命都是早期生命的后裔,而早期生命通过Charles Darwin的自然选择进化机制,逐渐变得更加复杂和多样化。Darwin在1863年给Hooker写信指出:
   −
< blockquote >
+
<blockquote>
 +
It is mere rubbish, thinking at present of the origin of life; one might as well think of the origin of matter.
 +
 
 
目前思考生命的起源纯粹是垃圾,还不如思考物质的起源。
 
目前思考生命的起源纯粹是垃圾,还不如思考物质的起源。
< blockquote >
+
</blockquote>
    
在《物种起源》中,他曾提到生命是 "被创造的",他说生命是“被创造出来的”,“实际上是指通过某种完全未知的过程‘出现’”,但很快就后悔使用《旧约》中的“创造”一词。
 
在《物种起源》中,他曾提到生命是 "被创造的",他说生命是“被创造出来的”,“实际上是指通过某种完全未知的过程‘出现’”,但很快就后悔使用《旧约》中的“创造”一词。
   −
==== Etymology of biogenesis and abiogenesis====
     −
生源论(生物起源)和非生源论(非生物起源)的词源学
+
====生源论(生物起源)和非生源论(非生物起源)的词源学====
   −
<!--This section is the for topic in general, so the following timeline of specific molecule discovery seems out of place:
+
生物起源一词通常归功于亨利·巴斯蒂安 Henry Bastian或托马斯·赫胥黎 Thomas Huxley。<ref name="eohtBiogenesis">{{cite encyclopedia |encyclopedia=Hmolpedia |title=Biogenesis |url=http://www.eoht.info/page/Biogenesis |accessdate=2014-05-19 |publisher=WikiFoundry, Inc. |location=Ancaster, Ontario, Canada |url-status=live |archiveurl=https://web.archive.org/web/20140520001148/http://www.eoht.info/page/Biogenesis |archivedate=20 May 2014}}</ref>Bastian大约在1869年与约翰·廷德尔John Tyndall的一次未发表的交流中使用了这个词,意思是“生命-起源或开始”。1870年,Huxley作为英国科学促进会的新任主席,发表了题为《生物起源和非生物起源 Biogenesis and Abiogenesis》的演讲。<ref name="Huxley 1968">{{harvnb|Huxley|1968}}</ref> 在演讲中,他介绍了“生物起源”(与Bastian的意思相反)以及“非生物起源”这个术语。
   −
< ! ——这一部分是一般的主题,所以下面的具体分子发现时间线似乎不合适:
     −
{{Main|Biogenesis}}
+
因此,关于生命物质总是经由先前存在的生命物质产生的假说,就有了明确的形式;并且,从今以后,在仔细的推理者能够承认以任何其他方式产生生命物质之前,在每一个特定的情况下,都有被考虑和被驳斥的权利。我有必要经常提到这个假说,所以,为了节省周折,我将把它称为“生物起源论”的假说;而我将把相反的学说--有生命的物质可能由无生命的物质产生--称为“非生物起源论 Abiogenesis”的假说。<ref name="Huxley 1968" />
   −
The term ''biogenesis'' is usually credited to either [[Henry Charlton Bastian|Henry Bastian]] or to [[Thomas Henry Huxley|Thomas Huxley]].<ref name="eohtBiogenesis">{{cite encyclopedia |encyclopedia=Hmolpedia |title=Biogenesis |url=http://www.eoht.info/page/Biogenesis |accessdate=2014-05-19 |publisher=WikiFoundry, Inc. |location=Ancaster, Ontario, Canada |url-status=live |archiveurl=https://web.archive.org/web/20140520001148/http://www.eoht.info/page/Biogenesis |archivedate=20 May 2014}}</ref> Bastian used the term around 1869 in an unpublished exchange with [[John Tyndall]] to mean "life-origination or commencement". In 1870, Huxley, as new president of the [[British Science Association|British Association for the Advancement of Science]], delivered an address entitled ''Biogenesis and Abiogenesis''.<ref name="Huxley 1968">{{harvnb|Huxley|1968}}</ref> In it he introduced the term ''biogenesis'' (with an opposite meaning to Bastian's) as well as ''abiogenesis'':
     −
生物起源一词通常归功于亨利·巴斯蒂安Henry Bastian或托马斯·赫胥黎Thomas Huxley.。Bastian大约在1869年与约翰·廷德尔John Tyndall的一次未发表的交流中使用了这个词,意思是“生命-起源或开始”。1870年,Huxley作为英国科学促进会的新任主席,发表了题为《生物起源和非生物起源》的演讲。在演讲中,他介绍了“生物起源”(与Bastian的意思相反)以及“非生物起源”这个术语。
+
随后,在Bastian1871年出版的《最低级生物的起源模式 The Modes of Origin of Lowest Organisms》<ref>{{harvnb|Bastian|1871}}</ref>一书的序言中,Bastian提到了可能与Huxley的用法相混淆,并明确放弃了自己的意思。
   −
:And thus the hypothesis that living matter always arises by the agency of pre-existing living matter, took definite shape; and had, henceforward, a right to be considered and a claim to be refuted, in each particular case, before the production of living matter in any other way could be admitted by careful reasoners. It will be necessary for me to refer to this hypothesis so frequently, that, to save circumlocution, I shall call it the hypothesis of ''Biogenesis''; and I shall term the contrary doctrine—that living matter may be produced by not living matter—the hypothesis of ''Abiogenesis''.<ref name="Huxley 1968" />
+
关于新术语 "生物自生 "的引入,似乎有必要作一解释。我最初在未发表的著作中,采用了 "生物起源 "一词来表达同样的意思,即生命的起源或开始。但与此同时,“生物起源”这个词已经被一位杰出的生物学家Huxley独立地使用了,他希望使它具有完全不同的意义。他还介绍了“非生物起源”这个词。然而,我从最权威的人士那里得知,这些词无论它们来自什么语言,都不应具有最近公开赋予它们的含义。为了避免一切不必要的混淆,我因此放弃了使用 "生物起源 "这个词,而且由于刚才所讲的原因,我无法采用另一个词,我不得不引入一个新词,以便指定生命物质被认为是独立于先前存在的生命物质而产生的过程。<ref>{{harvnb|Bastian|1871|p=[https://ia902701.us.archive.org/BookReader/BookReaderImages.php?zip=/23/items/modesoforiginofl00bast/modesoforiginofl00bast_jp2.zip&file=modesoforiginofl00bast_jp2/modesoforiginofl00bast_0015.jp2&scale=4&rotate=0 xi–xii]}}</ref>
   −
因此,关于生命物质总是经由先前存在的生命物质产生的假说,就有了明确的形式;并且,从今以后,在仔细的推理者能够承认以任何其他方式产生生命物质之前,在每一个特定的情况下,都有被考虑和被驳斥的权利。我有必要经常提到这个假说,所以,为了节省周折,我将把它称为“生物起源论”的假说;而我将把相反的学说--有生命的物质可能由无生命的物质产生--称为“非生物起源论”的假说。
     −
-->
+
自19世纪末以来,'演化性非生物起源'是指物质从惰性状态到生命状态的复杂性和演化性的增加。<ref>[https://link.springer.com/referenceworkentry/10.1007/978-3-642-27833-4_2-4 Abiogenesis – Definition]. 20 April 2015. ''Encyclopedia of Astrobiology''. </ref>
   −
-->
+
=== 奥帕林 Oparin:原始汤假说===
   −
Subsequently, in the preface to Bastian's 1871 book, ''The Modes of Origin of Lowest Organisms'',<ref>{{harvnb|Bastian|1871}}</ref> Bastian referred to the possible confusion with Huxley's usage and explicitly renounced his own meaning:
+
对于生命的起源,没有一个普遍接受的模式。科学家们提出了几种似乎可信的假说,这些假说有一些共同的内容。这些假说虽然在细节上有所不同,但都是基于亚历山大·奥帕林Alexander Oparin(1924年)和约翰·霍尔丹John Haldane(1925年)提出的框架,即构成最早的细胞的第一批分子。<ref name="bah2">{{cite journal|last=Bahadur|first=Krishna|year=1973|title=Photochemical Formation of Self–sustaining Coacervates|url=http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf|url-status=dead|journal=Proceedings of the Indian National Science Academy|volume=39B|issue=4|pages=455–467|doi=10.1016/S0044-4057(75)80076-1|pmid=1242552|archiveurl=https://web.archive.org/web/20131019172800/http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf|archivedate=19 October 2013}}
   −
随后,在Bastian1871年出版的《最低级生物的起源模式》一书的序言中,Bastian提到了可能与Huxley的用法相混淆,并明确放弃了自己的意思。
+
<blockquote>
 +
. . . were synthesized under natural conditions by a slow process of molecular evolution, and these molecules then organized into the first molecular system with properties with biological order".
 +
...是在自然条件下通过缓慢的分子进化过程合成的,然后这些分子组成第一个具有生物秩序特性的分子系统"。{{cite journal|last=Bahadur|first=Krishna|year=1975|title=Photochemical Formation of Self-Sustaining Coacervates|journal=[[Microbiological Research|Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene]]|volume=130|issue=3|pages=211–218|doi=10.1016/S0044-4057(75)80076-1|oclc=641018092|pmid=1242552}}</ref>
 +
</blockquote>
   −
:A word of explanation seems necessary with regard to the introduction of the new term ''Archebiosis''. I had originally, in unpublished writings, adopted the word ''Biogenesis'' to express the same meaning—viz., life-origination or commencement. But in the meantime, the word ''Biogenesis'' has been made use of, quite independently, by a distinguished biologist [Huxley], who wished to make it bear a totally different meaning. He also introduced the word ''Abiogenesis''. I have been informed, however, on the best authority, that neither of these words can—with any regard to the language from which they are derived—be supposed to bear the meanings which have of late been publicly assigned to them. Wishing to avoid all needless confusion, I therefore renounced the use of the word ''Biogenesis'', and being, for the reason just given, unable to adopt the other term, I was compelled to introduce a new word, in order to designate the process by which living matter is supposed to come into being, independently of pre-existing living matter.<ref>{{harvnb|Bastian|1871|p=[https://ia902701.us.archive.org/BookReader/BookReaderImages.php?zip=/23/items/modesoforiginofl00bast/modesoforiginofl00bast_jp2.zip&file=modesoforiginofl00bast_jp2/modesoforiginofl00bast_0015.jp2&scale=4&rotate=0 xi–xii]}}</ref>
     −
Since the end of the nineteenth century, 'evolutive abiogenesis' means increasing complexity and evolution of matter from inert to living states.<ref>[https://link.springer.com/referenceworkentry/10.1007/978-3-642-27833-4_2-4 Abiogenesis – Definition]. 20 April 2015. ''Encyclopedia of Astrobiology''.  {{doi|10.1007/978-3-642-27833-4_2-4}}</ref>
+
Oparin和Haldane提出,早期地球的大气可能具有化学还原性,主要由甲烷(CH<sub>4</sub>)、氨(NH<sub>3</sub>)、水(H<sub>2</sub>O)、硫化氢(H<sub>2</sub>S、二氧化碳(CO<sub>2</sub>)或一氧化碳(CO)和磷酸盐(PO<sub>4</sub><sup>3−</sup>)组成,分子氧(O<sub>2</sub>)和臭氧(O<sub>3</sub>)很少或没有。根据后来的模型,冥古代晚期的大气主要由氮气(N<sub>2</sub>)和二氧化碳组成,还有少量的一氧化碳、氢气(H<sub>2</sub>)和硫磺化合物;<ref>{{harvnb|Kasting|1993|p=922}}</ref>虽然它确实缺乏分子氧和臭氧,<ref>{{harvnb|Kasting|1993|p=920}}</ref>但它并不像Oparin和Haldane所认为的那样具有化学还原性。
   −
关于新术语 "生物自生 "的引入,似乎有必要作一解释。我最初在未发表的著作中,采用了 "生物起源 "一词来表达同样的意思,即生命的起源或开始。但与此同时,“生物起源”这个词已经被一位杰出的生物学家Huxley独立地使用了,他希望使它具有完全不同的意义。他还介绍了“非生物起源”这个词。然而,我从最权威的人士那里得知,这些词无论它们来自什么语言,都不应具有最近公开赋予它们的含义。为了避免一切不必要的混淆,我因此放弃了使用 "生物起源 "这个词,而且由于刚才所讲的原因,我无法采用另一个词,我不得不引入一个新词,以便指定生命物质被认为是独立于先前存在的生命物质而产生的过程。
  −
自19世纪末以来,'演化性非生物起源'是指物质从惰性状态到生命状态的复杂性和演化性的增加。
     −
=== Oparin: Primordial soup hypothesis ===
+
直到1924年,才出现了关于这个问题的新的著名研究或假说,Oparin推理出大气中的氧气阻碍了某些有机化合物的合成,而这些有机化合物是生命的必要构件。在他的《生命的起源 The Origin of Life》一书中,<ref>{{harvnb|Bernal|1967|loc=[http://www.valencia.edu/~orilife/textos/The%20Origin%20of%20Life.pdf ''The Origin of Life'' (A.I. Oparin, 1924), pp. 199–234]}}</ref><ref>{{harvnb|Oparin|1953}}</ref> 他提出(与Darwin相呼应),被Pasteur抨击的 "生命的自然发生"事实上确实曾经发生过,但现在是不可能的,因为早期地球上发现的条件已经发生了变化,先前存在的生物体会立即消耗任何自发产生的生物体。Oparin认为,在无氧的大气中,通过太阳光的作用,可以产生有机分子的 "原始汤"。这些分子会以越来越复杂的方式结合在一起,直到形成凝聚的液滴。这些液滴会通过与其他液滴的融合而"生长",并通过裂变"繁殖"成子液滴,因此具有原始的新陈代谢,在这种新陈代谢中,能促进 "细胞完整性"的因子得以生存,而不能促进的因子则会灭绝。现代许多关于生命起源的理论仍然以Oparin的思想为出发点。
奥帕林 Oparin:原始汤假说
  −
{{Main|Primordial soup}}
     −
{{further|Miller–Urey experiment}}
     −
There is no single generally accepted model for the origin of life. Scientists have proposed several plausible hypotheses which share some common elements. While differing in details, these hypotheses are based on the framework laid out by [[Alexander Oparin]] (in 1924) and [[J. B. S. Haldane|John Haldane]] (in 1925), that the first molecules constituting the earliest cells < blockquote >. . . were synthesized under natural conditions by a slow process of molecular evolution, and these molecules then organized into the first molecular system with properties with biological order".<ref name="bah2">{{cite journal|last=Bahadur|first=Krishna|year=1973|title=Photochemical Formation of Self–sustaining Coacervates|url=http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf|url-status=dead|journal=Proceedings of the Indian National Science Academy|volume=39B|issue=4|pages=455–467|doi=10.1016/S0044-4057(75)80076-1|pmid=1242552|archiveurl=https://web.archive.org/web/20131019172800/http://www.dli.gov.in/rawdataupload/upload/insa/INSA_1/20005b73_455.pdf|archivedate=19 October 2013}}
+
大约在这个时候,Haldane提出,地球上的前生物海洋(与现代的同类海洋截然不同)会形成一种 "热稀汤",有机化合物可能在其中形成。Bernal将这一观点称为“生物创建”或“生物创造”,即有生命的物质从自我复制但无生命的分子中演化出来的过程,<ref name="Bernal 1967" /><ref>{{harvnb|Bryson|2004|pp=300–302}}</ref>并提出生物创建经过许多中间阶段。
   −
对于生命的起源,没有一个普遍接受的模式。科学家们提出了几种似乎可信的假说,这些假说有一些共同的内容。这些假说虽然在细节上有所不同,但都是基于亚历山大·奥帕林Alexander Oparin(1924年)和约翰·霍尔丹John Haldane(1925年)提出的框架,即构成最早的细胞的第一批分子。
     −
< blockquote >
+
罗伯特·夏皮罗 Robert Shapiro将Oparin和Haldane的 "原始汤"理论的 "成熟形态 "总结如下:<ref>{{harvnb|Shapiro|1987|p=110}}</ref>
...是在自然条件下通过缓慢的分子进化过程合成的,然后这些分子组成第一个具有生物秩序特性的分子系统"。
  −
< blockquote >
     −
* {{cite journal|last=Bahadur|first=Krishna|year=1975|title=Photochemical Formation of Self-Sustaining Coacervates|journal=[[Microbiological Research|Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene]]|volume=130|issue=3|pages=211–218|doi=10.1016/S0044-4057(75)80076-1|oclc=641018092|pmid=1242552}}</ref> < /blockquote >Oparin and Haldane suggested that the atmosphere of the early Earth may have been chemically reducing in nature, composed primarily of methane (CH<sub>4</sub>), ammonia (NH<sub>3</sub>), water (H<sub>2</sub>O), hydrogen sulfide (H<sub>2</sub>S), carbon dioxide (CO<sub>2</sub>) or carbon monoxide (CO), and [[phosphate]] (PO<sub>4</sub><sup>3−</sup>), with molecular oxygen (O<sub>2</sub>) and [[ozone]] (O<sub>3</sub>) either rare or absent. According to later models, the atmosphere in the late Hadean period consisted largely of nitrogen (N<sub>2</sub>) and carbon dioxide, with smaller amounts of carbon monoxide, hydrogen (H<sub>2</sub>), and sulfur compounds;<ref>{{harvnb|Kasting|1993|p=922}}</ref> while it did lack molecular oxygen and ozone,<ref>{{harvnb|Kasting|1993|p=920}}</ref> it was not as chemically reducing as Oparin and Haldane supposed.
+
# 早期的地球有一个化学还原的大气层。
   −
Oparin和Haldane提出,早期地球的大气可能具有化学还原性,主要由甲烷(CH<sub>4</sub>)、氨(NH<sub>3</sub>)、水(H<sub>2</sub>O)、硫化氢(H<sub>2</sub>S、二氧化碳(CO<sub>2</sub>)或一氧化碳(CO)和磷酸盐(PO<sub>4</sub><sup>3−</sup>)组成,分子氧(O<sub>2</sub>)和臭氧(O<sub>3</sub>)很少或没有。根据后来的模型,冥古代晚期的大气主要由氮气(N<sub>2</sub>)和二氧化碳组成,还有少量的一氧化碳、氢气(H<sub>2</sub>)和硫磺化合物;虽然它确实缺乏分子氧和臭氧,但它并不像Oparin和Haldane所认为的那样具有化学还原性。
+
# 这种大气层暴露在各种形式的能量之下,产生了简单的有机化合物("单质")。
   −
No new notable research or hypothesis on the subject appeared until 1924, when Oparin reasoned that atmospheric oxygen prevents the synthesis of certain organic compounds that are necessary building blocks for life. In his book ''The Origin of Life'',<ref>{{harvnb|Bernal|1967|loc=[http://www.valencia.edu/~orilife/textos/The%20Origin%20of%20Life.pdf ''The Origin of Life'' (A.I. Oparin, 1924), pp. 199–234]}}</ref><ref>{{harvnb|Oparin|1953}}</ref> he proposed (echoing Darwin) that the "spontaneous generation of life" that had been attacked by Pasteur did, in fact, occur once, but was now impossible because the conditions found on the early Earth had changed, and preexisting organisms would immediately consume any spontaneously generated organism. Oparin argued that a "primeval soup" of organic molecules could be created in an oxygenless atmosphere through the action of [[sunlight]]. These would combine in ever more complex ways until they formed [[coacervate]] droplets. These droplets would "[[cell growth|grow]]" by fusion with other droplets, and "[[reproduction|reproduce]]" through fission into daughter droplets, and so have a primitive [[metabolism]] in which factors that promote "cell integrity" survive, and those that do not become [[Extinction|extinct]]. Many modern theories of the origin of life still take Oparin's ideas as a starting point.
+
# 这些化合物积聚在 ""中,可能集中在不同的地点(海岸线、海洋喷口等)。
   −
直到1924年,才出现了关于这个问题的新的著名研究或假说,Oparin推理出大气中的氧气阻碍了某些有机化合物的合成,而这些有机化合物是生命的必要构件。在他的《生命的起源》一书中,他提出(与Darwin相呼应),被Pasteur抨击的 "生命的自然发生"事实上确实曾经发生过,但现在是不可能的,因为早期地球上发现的条件已经发生了变化,先前存在的生物体会立即消耗任何自发产生的生物体。Oparin认为,在无氧的大气中,通过太阳光的作用,可以产生有机分子的 "原始汤"。这些分子会以越来越复杂的方式结合在一起,直到形成凝聚的液滴。这些液滴会通过与其他液滴的融合而"生长",并通过裂变"繁殖"成子液滴,因此具有原始的新陈代谢,在这种新陈代谢中,能促进 "细胞完整性"的因子得以生存,而不能促进的因子则会灭绝。现代许多关于生命起源的理论仍然以Oparin的思想为出发点。
+
# 通过进一步的转化,更复杂的有机聚合物--最终在汤中发展出生命。
   −
About this time, Haldane suggested that the Earth's prebiotic oceans (quite different from their modern counterparts) would have formed a "hot dilute soup" in which organic compounds could have formed. Bernal called this idea ''biopoiesis'' or ''biopoesis'', the process of living matter evolving from self-replicating but non-living molecules,<ref name="Bernal 1967" /><ref>{{harvnb|Bryson|2004|pp=300–302}}</ref> and proposed that biopoiesis passes through a number of intermediate stages.
     −
大约在这个时候,Haldane提出,地球上的前生物海洋(与现代的同类海洋截然不同)会形成一种 "热稀汤",有机化合物可能在其中形成。Bernal将这一观点称为“生物创建”或“生物创造”,即有生命的物质从自我复制但无生命的分子中演化出来的过程,并提出生物创建经过许多中间阶段。
     −
[[Robert Shapiro (chemist)|Robert Shapiro]] has summarized the "primordial soup" theory of Oparin and Haldane in its "mature form" as follows:<ref>{{harvnb|Shapiro|1987|p=110}}</ref>
+
===约翰·伯纳尔===
 
  −
罗伯特·夏皮罗Robert Shapiro将Oparin和Haldane的 "原始汤"理论的 "成熟形态 "总结如下:
  −
 
  −
# The early Earth had a chemically [[reducing atmosphere]].
  −
 
  −
早期的地球有一个化学还原的大气层。
  −
 
  −
# This atmosphere, exposed to [[energy]] in various forms, produced simple organic compounds ("[[monomer]]s").
  −
 
  −
这种大气层暴露在各种形式的能量之下,产生了简单的有机化合物("单质")。
  −
 
  −
# These compounds accumulated in a "soup" that may have concentrated at various locations (shorelines, [[Hydrothermal vent|oceanic vents]] etc.).
  −
 
  −
这些化合物积聚在 "汤 "中,可能集中在不同的地点(海岸线、海洋喷口等)。
  −
 
  −
# By further transformation, more complex organic [[polymer]]s—and ultimately life—developed in the soup.
  −
 
  −
通过进一步的转化,更复杂的有机聚合物--最终在汤中发展出生命。
  −
 
  −
===John Bernal===
  −
约翰•伯纳尔
  −
John Bernal showed that based upon this and subsequent work there is no difficulty in principle in forming most of the molecules we recognize as the necessary molecules for life from their inorganic precursors. The underlying hypothesis held by Oparin, Haldane, Bernal, Miller and Urey, for instance, was that multiple conditions on the primeval Earth favoured chemical reactions that synthesized the same set of complex organic compounds from such simple precursors.
      
John Bernal 表明,基于这一研究和随后的工作,从无机前体中形成我们所认识到的生命所必需的大部分分子原则上没有困难。例如,Oparin、Haldane、Bernal、Miller和Urey所持的基本假设是,原始地球上的多种条件有利于化学反应从这些简单的前体合成同一组复杂的有机化合物。
 
John Bernal 表明,基于这一研究和随后的工作,从无机前体中形成我们所认识到的生命所必需的大部分分子原则上没有困难。例如,Oparin、Haldane、Bernal、Miller和Urey所持的基本假设是,原始地球上的多种条件有利于化学反应从这些简单的前体合成同一组复杂的有机化合物。
   −
Bernal coined the term ''biopoiesis'' in 1949 to refer to the origin of life.<ref>{{harvnb|Bernal|1951}}</ref> In 1967, he suggested that it occurred in three "stages":
     −
Bernal在1949年创造了“生物创建”这一术语,用来指代生命的起源。1967年,他提出生命的起源是分三个 "阶段 "发生的。
+
Bernal在1949年创造了“生物创建”这一术语,用来指代生命的起源。<ref>{{harvnb|Bernal|1951}}</ref>1967年,他提出生命起源的三个 "阶段 "
   −
# the origin of biological monomers
+
# 生物单体的起源
   −
生物单体的起源
+
# 生物聚合物的起源
   −
# the origin of biological polymers
+
# 从分子到细胞的演变
   −
生物聚合物的起源
+
Bernal认为,进化始于第一和第二阶段之间。Bernal认为第三阶段是最困难的阶段,在这一阶段,生物反应被纳入细胞的边界之后。现代对细胞膜自组装方式的研究,以及对各种基质中微孔的研究,可能是理解独立自主生活细胞发展的关键一步。<ref>{{cite journal |last= Martin |first= William F. |authorlink= William F. Martin |date= January 2003 |title= On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=Phil. Trans. R. Soc. Lond. A |volume= 358 |issue= 1429 |pages= 59–83 |doi= 10.1098/rstb.2002.1183 |pmid=12594918 |pmc=1693102}}</ref><ref>{{cite journal |last= Bernal |first= John Desmond |authorlink= John Desmond Bernal |date= September 1949 |title= The Physical Basis of Life |journal= Proceedings of the Physical Society, Section A |volume= 62 |issue= 9 |pages= 537–558 |bibcode= 1949PPSA...62..537B |doi= 10.1088/0370-1298/62/9/301 }}</ref><ref>{{harvnb|Kauffman|1995}}</ref>
   −
# the evolution from molecules to cells
     −
从分子到细胞的演变
     −
Bernal suggested that evolution commenced between stages 1 and 2. Bernal regarded the third stage, in which biological reactions were incorporated behind a cell's boundary, as the most difficult. Modern work on the way that [[cell membrane]]s self-assemble, and the work on micropores in various substrates, may be a key step towards understanding the development of independent free-living cells.<ref>{{cite journal |last= Martin |first= William F. |authorlink= William F. Martin |date= January 2003 |title= On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=Phil. Trans. R. Soc. Lond. A |volume= 358 |issue= 1429 |pages= 59–83 |doi= 10.1098/rstb.2002.1183 |pmid=12594918 |pmc=1693102}}</ref><ref>{{cite journal |last= Bernal |first= John Desmond |authorlink= John Desmond Bernal |date= September 1949 |title= The Physical Basis of Life |journal= Proceedings of the Physical Society, Section A |volume= 62 |issue= 9 |pages= 537–558 |bibcode= 1949PPSA...62..537B |doi= 10.1088/0370-1298/62/9/301 }}</ref><ref>{{harvnb|Kauffman|1995}}</ref>
+
===Miller–Urey实验===
 +
[[File:Miller1999.jpg|thumb|left|upright|斯坦利·米勒 Stanley Miller]]
 +
[[File:Miller-Urey.jpg|thumb|upright=1.5|Miller–Urey实验]]
   −
Bernal认为,进化始于第一和第二阶段之间。Bernal认为第三阶段是最困难的阶段,在这一阶段,生物反应被纳入细胞的边界之后。现代对细胞膜自组装方式的研究,以及对各种基质中微孔的研究,可能是理解独立自主生活细胞发展的关键一步。
     −
===Miller–Urey experiment===
+
“汤 ”理论最重要的实验支持之一是在1952年。Stanley Miller和Harold Urey做了一个实验,证明了在类似Oparin-Haldane假说所提出的条件下,有机分子是如何从无机前体自发形成的。现在著名的Miller-Urey实验使用高度还原性的混合气体--甲烷、氨、氢以及水蒸气—来形成简单的有机单体,如氨基酸。<ref>{{cite journal |last=Miller |first=Stanley L. |authorlink=Stanley Miller |date=15 May 1953 |title=A Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |volume=117 |issue=3046 |pages=528–529 |bibcode=1953Sci...117..528M |doi=10.1126/science.117.3046.528 |pmid=13056598}}</ref>混合气体通过一个装置循环,将电火花传递到混合物中。一周后,发现系统中约有10%至15%的碳以有机化合物的外消旋混合物的形式存在,其中包括氨基酸,而氨基酸是蛋白质的构件。这为 "汤 "理论的第二点提供了直接的实验支持,而现在很多争论的焦点正是围绕着该理论的其余两点。
   −
米勒-乌雷实验
     −
[[File:Miller1999.jpg|thumb|left|upright|Stanley Miller]]
+
2011年,利用目前更先进的分析设备和技术,对Miller和Urey实验产生的含有原始提取物的保存瓶进行了重新分析,发现了比20世纪50年代最初发现的更多的生化物质。其中比较重要的发现是23种氨基酸,远远超过原来发现的5种。<ref name="pmid21422282">{{cite journal |last1=Parker |first1=Eric T. |last2=Cleaves |first2=Henderson J. |last3=Dworkin |first3=Jason P. |last4=Glavin |first4=Daniel P. |last5=Callahan |first5=Michael |last6=Aubrey |first6=Andrew |last7=Lazcano |first7=Antonio |last8=Bada |first8=Jeffrey L. |display-authors=3 |date=5 April 2011 |title=Primordial synthesis of amines and amino acids in a 1958 Miller H<sub>2</sub>S-rich spark discharge experiment |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=14 |pages=5526–5531 |bibcode=2011PNAS..108.5526P |doi=10.1073/pnas.1019191108 |pmc=3078417 |pmid=21422282 }}</ref>
   −
斯坦利·米勒
+
== 生物分子的原始起源: 化学 ==
   −
[[File:Miller-Urey.jpg|thumb|upright=1.5|Miller–Urey experiment JP]]  
+
生物前的早期地球的化学过程称为“化学进化”。除氢和氦外,其他元素最终都来自于恒星核合成。2016年,天文学家报告说,生命的非常基本的化学成分--碳氢分子(CH,或称次甲基自由基)、碳氢正离子(CH+)和碳离子(C+)--主要是来自恒星的紫外线的结果,而不是之前认为的来自超新星和年轻恒星的其他辐射形式。<ref name="NASA-20161012">{{cite web |last=Landau |first=Elizabeth |title=Building Blocks of Life's Building Blocks Come From Starlight |url=http://www.jpl.nasa.gov/news/news.php?feature=6645 |date=12 October 2016 |work=[[NASA]] |accessdate=13 October 2016 |url-status=live |archiveurl=https://web.archive.org/web/20161013135018/http://www.jpl.nasa.gov/news/news.php?feature=6645 |archivedate=13 October 2016}}</ref>复杂的分子,包括有机分子,在太空和行星上自然形成。<ref name="Ehrenfreund2010" /> 早期地球上的有机分子有两种可能的来源:
   −
Miller–Urey实验JP
+
# 地球起源 -- -- 撞击冲击或其他能量源(如紫外光、氧化还原耦合或放电;如,Miller的实验)驱动的有机分子合成。
   −
One of the most important pieces of experimental support for the "soup" theory came in 1952. [[Stanley L. Miller|Stanley Miller]] and [[Harold C. Urey|Harold Urey]] performed an experiment that demonstrated how organic molecules could have spontaneously formed from inorganic precursors under conditions like those posited by the Oparin-Haldane hypothesis. The now-famous [[Miller–Urey experiment]] used a highly reducing mixture of gases—[[methane]], [[ammonia]], and [[hydrogen gas|hydrogen]], as well as [[water vapor]]—to form simple organic monomers such as amino acids.<ref>{{cite journal |last=Miller |first=Stanley L. |authorlink=Stanley Miller |date=15 May 1953 |title=A Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |volume=117 |issue=3046 |pages=528–529 |bibcode=1953Sci...117..528M |doi=10.1126/science.117.3046.528 |pmid=13056598}}</ref> The mixture of gases was cycled through an apparatus that delivered electrical sparks to the mixture. After one week, it was found that about 10% to 15% of the carbon in the system was then in the form of a [[racemic mixture]] of organic compounds, including amino acids, which are the building blocks of [[protein]]s. This provided direct experimental support for the second point of the "soup" theory, and it is around the remaining two points of the theory that much of the debate now centers.
+
# 地外起源--星际尘埃云中有机分子的形成,这些尘埃云降到行星上。<ref name="Gawlowicz 2011">{{cite news |last=Gawlowicz |first=Susan |date=6 November 2011 |title=Carbon-based organic 'carriers' in interstellar dust clouds? Newly discovered diffuse interstellar bands |url=https://www.sciencedaily.com/releases/2011/11/111102161149.htm |work=[[Science Daily]] |location=Rockville, MD |publisher=ScienceDaily, LLC |accessdate=2015-06-08 |url-status=live |archiveurl=https://web.archive.org/web/20150711114643/https://www.sciencedaily.com/releases/2011/11/111102161149.htm |archivedate=11 July 2015}}</ref>
   −
“汤 ”理论最重要的实验支持之一是在1952年。Stanley Miller和Harold Urey做了一个实验,证明了在类似Oparin-Haldane假说所提出的条件下,有机分子是如何从无机前体自发形成的。现在著名的Miller-Urey实验使用高度还原性的混合气体--甲烷、氨、氢以及水蒸气—来形成简单的有机单体,如氨基酸。混合气体通过一个装置循环,将电火花传递到混合物中。一周后,发现系统中约有10%至15%的碳以有机化合物的外消旋混合物的形式存在,其中包括氨基酸,而氨基酸是蛋白质的构件。这为 "汤 "理论的第二点提供了直接的实验支持,而现在很多争论的焦点正是围绕着该理论的其余两点。
+
=== 观察到的地外有机分子===
   −
A 2011 reanalysis of the saved vials containing the original extracts that resulted from the Miller and Urey experiments, using current and more advanced analytical equipment and technology, has uncovered more biochemicals than originally discovered in the 1950s. One of the more important findings was 23 amino acids, far more than the five originally found.<ref name="pmid21422282">{{cite journal |last1=Parker |first1=Eric T. |last2=Cleaves |first2=Henderson J. |last3=Dworkin |first3=Jason P. |last4=Glavin |first4=Daniel P. |last5=Callahan |first5=Michael |last6=Aubrey |first6=Andrew |last7=Lazcano |first7=Antonio |last8=Bada |first8=Jeffrey L. |display-authors=3 |date=5 April 2011 |title=Primordial synthesis of amines and amino acids in a 1958 Miller H<sub>2</sub>S-rich spark discharge experiment |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=14 |pages=5526–5531 |bibcode=2011PNAS..108.5526P |doi=10.1073/pnas.1019191108 |pmc=3078417 |pmid=21422282 }}</ref>
+
有机化合物是指分子中含有碳的一大类气态、液态或固态化学物质的任何成员。<ref>{{cite encyclopedia |encyclopedia=Encyclopedia of Science |title=biological abundance of elements |url=http://www.daviddarling.info/encyclopedia/E/elbio.html |publisher=David Darling Enterprises |location=Dundee, Scotland |accessdate=2008-10-09 |url-status=live |archiveurl=https://web.archive.org/web/20120204033420/http://www.daviddarling.info/encyclopedia/E/elbio.html |archivedate=4 February 2012}}</ref>按质量计算,碳是宇宙中仅次于氢、氦和氧的第四大丰富元素。<ref name="NASA-20140221">{{cite web |url=http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |title=Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That |last=Hoover |first=Rachel |date=21 February 2014 |website=[[Ames Research Center]] |publisher=NASA |location=Mountain View, CA |accessdate=2015-06-22 |url-status=live |archiveurl=https://web.archive.org/web/20150906061428/http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |archivedate=6 September 2015}}</ref>碳在太阳、恒星、彗星和大多数行星的大气层中含量丰富。有机化合物在太空中比较常见,是由分子云和环星包层中出现的 "复杂分子合成工厂"形成的,主要由电离辐射引发反应后发生化学演变。<ref name="Ehrenfreund2010">{{cite journal |last1=Ehrenfreund |first1=Pascale |last2=Cami |first2=Jan |date=December 2010 |title=Cosmic carbon chemistry: from the interstellar medium to the early Earth. |journal=Cold Spring Harbor Perspectives in Biology |volume=2 |issue=12 |page=a002097 |doi=10.1101/cshperspect.a002097 |pmc=2982172 |pmid=20554702}}</ref><ref name="FromADistantComet">{{cite news |last=Chang |first=Kenneth |date=18 August 2009 |title=From a Distant Comet, a Clue to Life |url=https://www.nytimes.com/2009/08/19/science/space/19comet.html |newspaper=The New York Times |location=New York |page=A18 |accessdate=2015-06-22 |url-status=live |archiveurl=https://web.archive.org/web/20150623005046/http://www.nytimes.com/2009/08/19/science/space/19comet.html |archivedate=23 June 2015}}</ref><ref>{{cite journal |last1=Goncharuk |first1=Vladislav V. |last2=Zui |first2=O. V. |date=February 2015 |title=Water and carbon dioxide as the main precursors of organic matter on Earth and in space |journal=Journal of Water Chemistry and Technology |volume=37 |issue=1 |pages=2–3 |doi=10.3103/S1063455X15010026 |s2cid=97965067 }}</ref><ref>{{cite journal |last1=Abou Mrad |first1=Ninette |last2=Vinogradoff |first2=Vassilissa |last3=Duvernay |first3=Fabrice |last4=Danger |first4=Grégoire |last5=Theulé |first5=Patrice |last6=Borget |first6=Fabien |last7=Chiavassa |first7=Thierry |display-authors=3 |year=2015 |title=Laboratory experimental simulations: Chemical evolution of the organic matter from interstellar and cometary ice analogs |url=http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1|journal=Bulletin de la Société Royale des Sciences de Liège |volume=84 |pages=21–32 |bibcode=2015BSRSL..84...21A  |accessdate=2015-04-06 |url-status=live |archiveurl=https://web.archive.org/web/20150413050621/http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1 |archivedate=13 April 2015}}</ref> 根据计算机模型研究,在地球形成之前,生命所需的复杂有机分子可能已经在太阳周围原行星盘的尘粒上形成。<ref name="Space-20120329" /> 根据计算机研究,这一过程也可能发生在其他获得行星的恒星周围。<ref name="Space-20120329" />
   −
2011年,利用目前更先进的分析设备和技术,对Miller和Urey实验产生的含有原始提取物的保存瓶进行了重新分析,发现了比20世纪50年代最初发现的更多的生化物质。其中比较重要的发现是23种氨基酸,远远超过原来发现的5种。
+
====氨基酸====
 +
美国宇航局在2009年宣布,科学家们首次在彗星中发现了生命的另一个基本化学构件--甘氨酸,这是一种氨基酸,在2004年从荒野2号彗星喷出的物质中检测到,并被美国宇航局的 "星尘 "探测器抓取。甘氨酸此前也曾在陨石中被检测到。领导美国宇航局天体生物学研究所的卡尔·皮尔彻Carl Pilcher说:
 +
<blockquote>
 +
The discovery of glycine in a comet supports the idea that the fundamental building blocks of life are prevalent in space, and strengthens the argument that life in the universe may be common rather than rare.
 +
在一颗彗星中发现甘氨酸,支持了生命的基本组成构件在太空中普遍存在的观点,并加强了宇宙中的生命可能是常见而非罕见的论点。<ref>{{cite news |author=<!--Staff writer(s); no by-line.--> |date=18 August 2009 |title='Life chemical' detected in comet |url=http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |work=BBC News |location=London |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150525071228/http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |archivedate=25 May 2015}}</ref>
 +
</blockquote>
 +
彗星外层包裹着深色物质,被认为是一种焦油状物质,由简单的碳化合物经过主要由电离辐射引发的反应后形成的复杂有机物质组成。彗星的物质雨有可能将大量的这种复杂的有机分子带到地球上。<ref>{{cite journal |last1=Thompson |first1=William Reid |last2=Murray |first2=B. G. |last3=Khare |first3=Bishun Narain |authorlink3=Bishun Khare |last4=Sagan |first4=Carl |date=30 December 1987 |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system |journal=[[Journal of Geophysical Research]] |volume=92 |issue=A13 |pages=14933–14947 |bibcode=1987JGR....9214933T |doi=10.1029/JA092iA13p14933 |pmid=11542127}}</ref><ref>{{cite web |url=https://www.llnl.gov/news/life-earth-shockingly-comes-out-world |title=Life on Earth shockingly comes from out of this world |last=Stark |first=Anne M. |date=5 June 2013 |publisher=[[Lawrence Livermore National Laboratory]] |location=Livermore, CA |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150916135630/https://www.llnl.gov/news/life-earth-shockingly-comes-out-world |archivedate=16 September 2015}}</ref><ref>{{cite journal |last1=Goldman |first1=Nir |last2=Tamblyn |first2=Isaac |date=20 June 2013 |title=Prebiotic Chemistry within a Simple Impacting Icy Mixture |journal=[[Journal of Physical Chemistry A]] |volume=117 |issue=24 |pages=5124–5131 |doi=10.1021/jp402976n |pmid=23639050|bibcode=2013JPCA..117.5124G |url=http://nparc.nrc-cnrc.gc.ca/eng/view/fulltext/?id=e89d2ac7-4cf8-40e0-bcc9-3c53f68ed70a }}</ref>在外星形成的氨基酸也可能通过彗星到达地球。<ref name="Follmann2009" /> 据估计,在晚期重型轰炸期间,陨石每年可能向地球输送多达500万吨的有机前生物元素。<ref name="Follmann2009" />
   −
== Primordial origin of biological molecules: Chemistry ==
+
==== 多环芳烃(PAH)世界假说 ====
   −
生物分子的原始起源: 化学 
     −
The chemical processes on the pre-biotic early Earth are called [[chemical evolution (disambiguation)|''chemical evolution'']].
+
多环芳烃 Polycyclic aromatic hydrocarbon(PAH)是可观测宇宙中已知的多原子分子中最常见、最丰富的一种,被认为是原始海的一种可能成分。<ref name="SP-20051018" /><ref name="AJ-20051010" /><ref name="NASA-20110413" /> 2010 年,在星云中检测到多环芳烃。<ref name="AJL-20101120">{{cite journal |last1=García-Hernández |first1=Domingo. A. |last2=Manchado |first2=Arturo |last3=García-Lario |first3=Pedro |last4=Stanghellini |first4=Letizia |last5=Villaver |first5=Eva |last6=Shaw |first6=Richard A. |last7=Szczerba |first7=Ryszard |last8=Perea-Calderón |first8=Jose Vicente |display-authors=3 |date=20 November 2010 |title=Formation of Fullerenes in H-Containing Planetary Nebulae |journal=The Astrophysical Journal Letters |volume=724 |issue=1 |pages=L39–L43 |arxiv=1009.4357 |bibcode=2010ApJ...724L..39G |doi=10.1088/2041-8205/724/1/L39}}</ref>
The [[Chemical element|elements]], except for hydrogen and helium, ultimately derive from [[stellar nucleosynthesis]]. In 2016, astronomers reported that the very basic chemical ingredients of [[life]]—the [[Carbon-hydrogen bond|carbon-hydrogen molecule]] (CH, or [[methylidyne radical]]), the carbon-hydrogen positive ion (CH+) and the carbon ion (C+)—are largely the result of [[ultraviolet light]] from stars, rather than other forms of radiation from [[supernovae]] and [[young star]]s, as thought earlier.<ref name="NASA-20161012">{{cite web |last=Landau |first=Elizabeth |title=Building Blocks of Life's Building Blocks Come From Starlight |url=http://www.jpl.nasa.gov/news/news.php?feature=6645 |date=12 October 2016 |work=[[NASA]] |accessdate=13 October 2016 |url-status=live |archiveurl=https://web.archive.org/web/20161013135018/http://www.jpl.nasa.gov/news/news.php?feature=6645 |archivedate=13 October 2016}}</ref> Complex molecules, including organic molecules, form naturally both in space and on planets.<ref name="Ehrenfreund2010" /> There are two possible sources of organic molecules on the early Earth:
     −
生物前的早期地球的化学过程称为“化学进化”。除氢和氦外,其他元素最终都来自于恒星核合成。2016年,天文学家报告说,生命的非常基本的化学成分--碳氢分子(CH,或称次甲基自由基)、碳氢正离子(CH+)和碳离子(C+)--主要是来自恒星的紫外线的结果,而不是之前认为的来自超新星和年轻恒星的其他辐射形式。复杂的分子,包括有机分子,在太空和行星上自然形成。早期地球上的有机分子有两种可能的来源:
     −
# Terrestrial origins – organic molecule synthesis driven by impact shocks or by other energy sources (such as UV light, [[Organic redox reaction|redox]] coupling, or electrical discharges; e.g., Miller's experiments)
+
[[File:PIA22568-CatsPawNebula-Spitzer-20181023.jpg|thumb|upright=1.3|该猫掌星云位于银河系内并位于星座 天蝎座。绿色区域表示来自热星的辐射与大分子和称为“多环芳烃”(PAHs)的小尘埃碰撞而导致发荧光的区域。(斯皮策太空望远镜,2018)]]
   −
地球起源 -- -- 撞击冲击或其他能量源(如紫外光、氧化还原耦合或放电;如,Miller的实验)驱动的有机分子合成。
     −
# Extraterrestrial origins – formation of organic molecules in [[Interstellar cloud|interstellar dust clouds]], which rain down on planets.<ref name="Gawlowicz 2011">{{cite news |last=Gawlowicz |first=Susan |date=6 November 2011 |title=Carbon-based organic 'carriers' in interstellar dust clouds? Newly discovered diffuse interstellar bands |url=https://www.sciencedaily.com/releases/2011/11/111102161149.htm |work=[[Science Daily]] |location=Rockville, MD |publisher=ScienceDaily, LLC |accessdate=2015-06-08 |url-status=live |archiveurl=https://web.archive.org/web/20150711114643/https://www.sciencedaily.com/releases/2011/11/111102161149.htm |archivedate=11 July 2015}} Post is reprinted from materials provided by the [[Rochester Institute of Technology]].
+
众所周知,多环芳烃在宇宙中非常丰富,<ref name="SP-20051018">{{cite news |last= Carey |first= Bjorn |date= 18 October 2005 |title= Life's Building Blocks 'Abundant in Space' |url= http://www.space.com/1686-life-building-blocks-abundant-space.html |website= Space.com |location= Watsonville, CA |publisher= [[Imaginova]] |accessdate= 2015-06-23 |url-status= live |archiveurl= https://web.archive.org/web/20150626223942/http://www.space.com/1686-life-building-blocks-abundant-space.html |archivedate= 26 June 2015}}</ref><ref name="AJ-20051010">{{cite journal |last1=Hudgins |first1= Douglas M. |last2=Bauschlicher |first2=Charles W. Jr. |last3=Allamandola |first3=Louis J. |date=10 October 2005 |title=Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population |journal=[[The Astrophysical Journal]] |volume=632 |pages=316–332 |issue=1 |bibcode=2005ApJ...632..316H |doi=10.1086/432495 |citeseerx=10.1.1.218.8786 }}</ref><ref name="NASA-20110413">{{cite web|url=http://amesteam.arc.nasa.gov/Research/cosmic.html |title=Cosmic Distribution of Chemical Complexity |last1=Des Marais |first1=David J. |last2=Allamandola |first2=Louis J. |last3=Sandford |first3=Scott |authorlink3=Scott Sandford |last4=Mattioda |first4=Andrew |last5=Gudipati |first5=Murthy |last6=Roser |first6=Joseph |last7=Bramall |first7=Nathan |last8=Nuevo |first8=Michel |last9=Boersma |first9=Christiaan |last10=Bernstein |first10=Max |last11=Peeters |first11=Els |last12=Cami |first12=Jan |last13=Cook |first13=Jamie Elsila |last14=Dworkin |first14=Jason |display-authors=3 |year=2009 |website=Ames Research Center |publisher=NASA |location=Mountain View, CA |accessdate=2015-06-24 |url-status=dead |archiveurl=https://web.archive.org/web/20140227184503/http://amesteam.arc.nasa.gov/Research/cosmic.html |archivedate=27 February 2014}} See the Ames Research Center 2009 annual team report to the [[NASA Astrobiology Institute]] here {{cite web|url=https://astrobiology.nasa.gov/nai/reports/annual-reports/2009/arc/ |title=Archived copy |accessdate=2015-06-24 |url-status=dead |archiveurl=https://web.archive.org/web/20130301064911/https://astrobiology.nasa.gov/nai/reports/annual-reports/2009/arc/ |archivedate=1 March 2013}}.</ref>包括在星际介质、彗星和陨石中,是迄今为止在空间发现的一些最复杂的分子。<ref name="NASA-20140221" />
   −
地外起源--星际尘埃云中有机分子的形成,这些尘埃云降到行星上。
     −
=== Observed extraterrestrial organic molecules ===
+
复杂分子的其他来源也被推测出来,包括地外恒星或星际起源。例如,根据光谱分析,已知有机分子存在于彗星和陨石中。2004年,一个团队在一个星云中检测到了多环芳烃的痕迹。<ref>{{cite conference |last1=Witt |first1=Adolf N. |last2=Vijh |first2=Uma P. |last3=Gordon |first3=Karl D. |date=January 2004 |title=Discovery of Blue Fluorescence by Polycyclic Aromatic Hydrocarbon Molecules in the Red Rectangle |url=https://aas.org/archives/BAAS/v35n5/aas203/189.htm |publisher=[[American Astronomical Society]] |bibcode=2003AAS...20311017W |archiveurl=https://web.archive.org/web/20031219175322/http://www.aas.org/publications/baas/v35n5/aas203/189.htm |archivedate=19 December 2003 |url-status=dead |conference=American Astronomical Society Meeting 203 |location=Atlanta, GA |access-date=16 January 2019 }}</ref>2010年,另一个团队也在星云中检测到了多环芳烃以及富勒烯。<ref name="AJL-20101120" />"多环芳烃世界"假说中还提出将多环芳烃作为RNA世界的前导。.<ref>{{Cite journal|last1=d'Ischia|first1=Marco|last2=Manini|first2=Paola|last3=Moracci|first3=Marco|last4=Saladino|first4=Raffaele|last5=Ball|first5=Vincent|last6=Thissen|first6=Helmut|last7=Evans|first7=Richard A.|last8=Puzzarini|first8=Cristina|last9=Barone|first9=Vincenzo|date=2019-08-21|title=Astrochemistry and Astrobiology: Materials Science in Wonderland?|journal=International Journal of Molecular Sciences|volume=20|issue=17|pages=4079|doi=10.3390/ijms20174079|issn=1422-0067|pmc=6747172|pmid=31438518}}</ref>斯皮策太空望远镜探测到一颗恒星HH 46-IR,它的形成过程与太阳的形成过程相似。在恒星周围的物质盘中,有非常多的分子,包括氰化合物、碳氢化合物和一氧化碳。2012年,美国宇航局的科学家报告说,多环芳烃在星际介质条件下,通过氢化、氧化和羟基化,转化为更复杂的有机物--"分别是向氨基酸和核苷酸(蛋白质和DNA的原料)道路上迈进的一步。 ""<ref name="Space-20120920">{{cite web |url= http://www.space.com/17681-life-building-blocks-nasa-organic-molecules.html |title= NASA Cooks Up Icy Organics to Mimic Life's Origins |date= 20 September 2012 |website= Space.com |location= Ogden, UT |publisher= Purch |accessdate= 2015-06-26 |url-status= live |archiveurl= https://web.archive.org/web/20150625035023/http://www.space.com/17681-life-building-blocks-nasa-organic-molecules.html |archivedate= 25 June 2015}}</ref><ref name="AJL-20120901">{{cite journal |last1=Gudipati |first1=Murthy S. |author2=Rui Yang |date=1 September 2012 |title=In-situ Probing of Radiation-induced Processing of Organics in Astrophysical Ice Analogs – Novel Laser Desorption Laser Ionization Time-of-flight Mass Spectroscopic Studies |journal=The Astrophysical Journal Letters |volume=756 |issue=1 |bibcode=2012ApJ...756L..24G |doi=10.1088/2041-8205/756/1/L24 |pages=L24}}</ref>此外,由于这些转化,多环芳烃失去了它们的光谱特征,这可能是 "星际冰粒,特别是寒冷的稠密云的外部区域或原行星盘的上层分子层中,缺乏检测到多环芳烃的原因之一。"<ref name="Space-20120920" /><ref name="AJL-20120901" />
   −
观察到的地外有机分子
     −
{{See also|List of interstellar and circumstellar molecules|Panspermia#Pseudo-panspermia}}
+
美国宇航局维护着一个追踪宇宙中多环芳烃的数据库。<ref name="NASA-20140221" /><ref>{{cite web |url=http://www.astrochem.org/pahdb/ |title=NASA Ames PAH IR Spectroscopic Database |publisher=NASA |accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150629185734/http://www.astrochem.org/pahdb/ |archivedate=29 June 2015}}</ref>宇宙中超过20%的碳可能与多环芳烃有关,<ref name="NASA-20140221" /><ref name="NASA-20140221" />可能是生命形成的起始材料。多环芳烃似乎是在宇宙大爆炸后不久形成的,在宇宙中广泛存在,<ref name="SP-20051018" /><ref name="AJ-20051010" /><ref name="NASA-20110413" />并与新的恒星和系外行星有关。<ref name="NASA-20140221" />
   −
An organic compound is any member of a large class of gaseous, liquid, or solid chemicals whose molecules contain carbon. Carbon is the [[Abundance of the chemical elements|fourth most abundant element in the Universe by mass]] after hydrogen, [[helium]], and oxygen.<ref>{{cite encyclopedia |encyclopedia=Encyclopedia of Science |title=biological abundance of elements |url=http://www.daviddarling.info/encyclopedia/E/elbio.html |publisher=David Darling Enterprises |location=Dundee, Scotland |accessdate=2008-10-09 |url-status=live |archiveurl=https://web.archive.org/web/20120204033420/http://www.daviddarling.info/encyclopedia/E/elbio.html |archivedate=4 February 2012}}</ref> Carbon is abundant in the Sun, stars, comets, and in the [[Celestial body's atmosphere|atmospheres]] of most planets.<ref name="NASA-20140221">{{cite web |url=http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |title=Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That |last=Hoover |first=Rachel |date=21 February 2014 |website=[[Ames Research Center]] |publisher=NASA |location=Mountain View, CA |accessdate=2015-06-22 |url-status=live |archiveurl=https://web.archive.org/web/20150906061428/http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/ |archivedate=6 September 2015}}</ref> Organic compounds are relatively common in space, formed by "factories of complex molecular synthesis" which occur in [[molecular cloud]]s and [[circumstellar envelope]]s, and chemically evolve after reactions are initiated mostly by [[ionizing radiation]].<ref name="Ehrenfreund2010">{{cite journal |last1=Ehrenfreund |first1=Pascale |last2=Cami |first2=Jan |date=December 2010 |title=Cosmic carbon chemistry: from the interstellar medium to the early Earth. |journal=Cold Spring Harbor Perspectives in Biology |volume=2 |issue=12 |page=a002097 |doi=10.1101/cshperspect.a002097 |pmc=2982172 |pmid=20554702}}</ref><ref name="FromADistantComet">{{cite news |last=Chang |first=Kenneth |date=18 August 2009 |title=From a Distant Comet, a Clue to Life |url=https://www.nytimes.com/2009/08/19/science/space/19comet.html |newspaper=The New York Times |location=New York |page=A18 |accessdate=2015-06-22 |url-status=live |archiveurl=https://web.archive.org/web/20150623005046/http://www.nytimes.com/2009/08/19/science/space/19comet.html |archivedate=23 June 2015}}</ref><ref>{{cite journal |last1=Goncharuk |first1=Vladislav V. |last2=Zui |first2=O. V. |date=February 2015 |title=Water and carbon dioxide as the main precursors of organic matter on Earth and in space |journal=Journal of Water Chemistry and Technology |volume=37 |issue=1 |pages=2–3 |doi=10.3103/S1063455X15010026 |s2cid=97965067 }}</ref><ref>{{cite journal |last1=Abou Mrad |first1=Ninette |last2=Vinogradoff |first2=Vassilissa |last3=Duvernay |first3=Fabrice |last4=Danger |first4=Grégoire |last5=Theulé |first5=Patrice |last6=Borget |first6=Fabien |last7=Chiavassa |first7=Thierry |display-authors=3 |year=2015 |title=Laboratory experimental simulations: Chemical evolution of the organic matter from interstellar and cometary ice analogs |url=http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1|journal=Bulletin de la Société Royale des Sciences de Liège |volume=84 |pages=21–32 |bibcode=2015BSRSL..84...21A  |accessdate=2015-04-06 |url-status=live |archiveurl=https://web.archive.org/web/20150413050621/http://popups.ulg.ac.be/0037-9565/index.php?id=4621&file=1 |archivedate=13 April 2015}}</ref> Based on [[computer simulation|computer model studies]], the complex organic molecules necessary for life may have formed on dust grains in the protoplanetary disk surrounding the Sun before the formation of the Earth.<ref name="Space-20120329" /> According to the computer studies, this same process may also occur around other stars that acquire planets.<ref name="Space-20120329" />
     −
有机化合物是指分子中含有碳的一大类气态、液态或固态化学物质的任何成员。按质量计算,碳是宇宙中仅次于氢、氦和氧的第四大丰富元素。碳在太阳、恒星、彗星和大多数行星的大气层中含量丰富。有机化合物在太空中比较常见,是由分子云和环星包层中出现的 "复杂分子合成工厂"形成的,主要由电离辐射引发反应后发生化学演变。 根据计算机模型研究,在地球形成之前,生命所需的复杂有机分子可能已经在太阳周围原行星盘的尘粒上形成。根据计算机研究,这一过程也可能发生在其他获得行星的恒星周围。
+
====核酸碱基====
   −
====Amino acids====
+
观测结果表明,星际尘埃颗粒引入地球的大多数有机化合物被认为是形成复杂分子的主要媒介,这是因为它们具有特殊的表面催化活性。<ref name="Lincei">{{cite journal |last=Gallori |first=Enzo |title=Astrochemistry and the origin of genetic material |journal=Rendiconti Lincei |date=June 2011 |volume=22 |issue=2 |pages=113–118 |doi=10.1007/s12210-011-0118-4 |s2cid=96659714 }} "Paper presented at the Symposium 'Astrochemistry: molecules in space and time' (Rome, 4–5 November 2010), sponsored by Fondazione 'Guido Donegani', Accademia Nazionale dei Lincei."</ref><ref>{{cite journal |last=Martins |first=Zita |authorlink=Zita Martins |date=February 2011 |title=Organic Chemistry of Carbonaceous Meteorites |journal=[[Elements (journal)|Elements]] |volume=7 |issue=1 |pages=35–40 |doi=10.2113/gselements.7.1.35 }}</ref>2008年报告的研究基于在默奇森陨石中发现的有机化合物的<sup>12</sup>C/<sup>13</sup>C同位素比率,表明RNA成分尿嘧啶和相关分子,包括黄嘌呤,是在外星形成的。<ref name="Murch_base">{{cite journal |last1=Martins |first1=Zita |last2=Botta |first2=Oliver |last3=Fogel |first3=Marilyn L. |last4=Sephton |first4=Mark A. |last5=Glavin |first5=Daniel P. |last6=Watson |first6=Jonathan S. |last7=Dworkin |first7=Jason P. |last8=Schwartz |first8=Alan W. |last9=Ehrenfreund |first9=Pascale |display-authors=3 |date=15 June 2008 |title=Extraterrestrial nucleobases in the Murchison meteorite |journal=Earth and Planetary Science Letters |volume=270 |issue=1–2 |pages=130–136 |bibcode=2008E&PSL.270..130M |arxiv=0806.2286 |doi=10.1016/j.epsl.2008.03.026 |s2cid=14309508 }}</ref><ref>{{cite news |author=<!--Staff writer(s); no by-line.--> |date=14 June 2008 |title=We may all be space aliens: study |url=http://www.abc.net.au/news/2008-06-14/we-may-all-be-space-aliens-study/2471434 |location=Sydney |publisher=[[Australian Broadcasting Corporation]] |agency=[[Agence France-Presse]] |accessdate=2015-06-22 |url-status=live |archiveurl=https://web.archive.org/web/20150623073332/http://www.abc.net.au/news/2008-06-14/we-may-all-be-space-aliens-study/2471434 |archivedate=23 June 2015}}</ref> 2011年,发表了一份基于美国宇航局对在地球上发现的陨石的研究的报告,表明DNA成分(腺嘌呤、鸟嘌呤和相关有机分子)是在外太空制造的。 <ref name="Lincei" /><ref name="Callahan">{{cite journal |last1=Callahan |first1=Michael P. |last2=Smith |first2=Karen E. |last3=Cleaves |first3=H. James, II |last4=Ruzica |first4=Josef |last5=Stern |first5=Jennifer C. |last6=Glavin |first6=Daniel P. |last7=House |first7=Christopher H. |last8=Dworkin |first8=Jason P. |display-authors=3 |date=23 August 2011 |title=Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=34 |pages=13995–13998 |bibcode=2011PNAS..10813995C |doi=10.1073/pnas.1106493108 |pmc=3161613 |pmid=21836052}}</ref><ref name="Steigerwald">{{cite web |url=http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |title=NASA Researchers: DNA Building Blocks Can Be Made in Space |last=Steigerwald |first=John |date=8 August 2011 |work=[[Goddard Space Flight Center]] |publisher=NASA |location=Greenbelt, MD |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150623004556/http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |archivedate=23 June 2015}}</ref>科学家们还发现,弥漫在宇宙中的宇宙尘埃中含有复杂的有机物("具有芳香族-脂肪族混合结构的无定形有机固体"),这些有机物可能是由恒星自然地、迅速地创造出来的。<ref name="Space-20111026">{{cite news |last= Chow |first= Denise |date= 26 October 2011 |title= Discovery: Cosmic Dust Contains Organic Matter from Stars |url= http://www.space.com/13401-cosmic-star-dust-complex-organic-compounds.html |website= Space.com |location= Ogden, UT |publisher= Purch |accessdate= 2015-06-23 |url-status= live |archiveurl= https://web.archive.org/web/20150714084901/http://www.space.com/13401-cosmic-star-dust-complex-organic-compounds.html |archivedate= 14 July 2015}}</ref><ref name="ScienceDaily-20111026">{{cite news |author=The University of Hong Kong |date=27 October 2011 |title=Astronomers discover complex organic matter exists throughout the universe |url=https://www.sciencedaily.com/releases/2011/10/111026143721.htm |location=Rockville, MD |publisher= ScienceDaily, LLC |url-status=live |archiveurl=https://web.archive.org/web/20150703185252/https://www.sciencedaily.com/releases/2011/10/111026143721.htm |archivedate=3 July 2015|author-link=University of Hong Kong }}</ref><ref name="Nature-20111026">{{cite journal |author1=Sun Kwok |authorlink1=Sun Kwok |author2=Yong Zhang |date=3 November 2011 |title=Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features |journal=Nature |volume=479 |issue=7371 |pages=80–83 |bibcode=2011Natur.479...80K |doi=10.1038/nature10542 |pmid=22031328|s2cid=4419859 }}</ref>香港大学的郭新 Sun Kwok提出,这些化合物可能与地球上生命的发展有关,他说:"如果是这样的话,地球上的生命可能更容易开始,因为这些有机物可以作为生命的基本原料。"<ref name="Space-20111026" />
氨基酸
  −
NASA announced in 2009 that scientists had identified another fundamental chemical building block of life in a comet for the first time, glycine, an amino acid, which was detected in material ejected from comet [[81P/Wild|Wild 2]] in 2004 and grabbed by NASA's [[Stardust (spacecraft)|''Stardust'']] probe. Glycine has been detected in meteorites before. Carl Pilcher, who leads the [[NASA Astrobiology Institute]] commented that < blockquote >The discovery of glycine in a comet supports the idea that the fundamental building blocks of life are prevalent in space, and strengthens the argument that life in the universe may be common rather than rare.<ref>{{cite news |author=<!--Staff writer(s); no by-line.--> |date=18 August 2009 |title='Life chemical' detected in comet |url=http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |work=BBC News |location=London |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150525071228/http://news.bbc.co.uk/2/hi/science/nature/8208307.stm |archivedate=25 May 2015}}</ref>< /blockquote > Comets are encrusted with outer layers of dark material, thought to be a [[tar]]-like substance composed of complex organic material formed from simple carbon compounds after reactions initiated mostly by ionizing radiation. It is possible that a rain of material from comets could have brought significant quantities of such complex organic molecules to Earth.<ref>{{cite journal |last1=Thompson |first1=William Reid |last2=Murray |first2=B. G. |last3=Khare |first3=Bishun Narain |authorlink3=Bishun Khare |last4=Sagan |first4=Carl |date=30 December 1987 |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system |journal=[[Journal of Geophysical Research]] |volume=92 |issue=A13 |pages=14933–14947 |bibcode=1987JGR....9214933T |doi=10.1029/JA092iA13p14933 |pmid=11542127}}</ref><ref>{{cite web |url=https://www.llnl.gov/news/life-earth-shockingly-comes-out-world |title=Life on Earth shockingly comes from out of this world |last=Stark |first=Anne M. |date=5 June 2013 |publisher=[[Lawrence Livermore National Laboratory]] |location=Livermore, CA |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150916135630/https://www.llnl.gov/news/life-earth-shockingly-comes-out-world |archivedate=16 September 2015}}</ref><ref>{{cite journal |last1=Goldman |first1=Nir |last2=Tamblyn |first2=Isaac |date=20 June 2013 |title=Prebiotic Chemistry within a Simple Impacting Icy Mixture |journal=[[Journal of Physical Chemistry A]] |volume=117 |issue=24 |pages=5124–5131 |doi=10.1021/jp402976n |pmid=23639050|bibcode=2013JPCA..117.5124G |url=http://nparc.nrc-cnrc.gc.ca/eng/view/fulltext/?id=e89d2ac7-4cf8-40e0-bcc9-3c53f68ed70a }}</ref> Amino acids which were formed extraterrestrially may also have arrived on Earth via comets.<ref name="Follmann2009" /> It is estimated that during the Late Heavy Bombardment, meteorites may have delivered up to five million [[ton]]s of organic prebiotic elements to Earth per year.<ref name="Follmann2009" />
     −
美国宇航局在2009年宣布,科学家们首次在彗星中发现了生命的另一个基本化学构件--甘氨酸,这是一种氨基酸,在2004年从荒野2号彗星喷出的物质中检测到,并被美国宇航局的 "星尘 "探测器抓取。甘氨酸此前也曾在陨石中被检测到。领导美国宇航局天体生物学研究所的卡尔·皮尔彻Carl Pilcher说。
+
====糖-羟乙醛====
 +
[[File:Formation of Glycolaldehyde in star dust.png|thumb|在星尘中羟乙醇醛的形成]]
   −
在一颗彗星中发现甘氨酸,支持了生命的基本组成构件在太空中普遍存在的观点,并加强了宇宙中的生命可能是常见而非罕见的论点。
+
羟乙醛是星际糖分子的第一个例子,在银河系中心附近的恒星形成区被发现。它是由詹斯·约根森 Jes Jørgensen和简·霍利斯 Jan Hollis在2000年发现的。<ref name=Hollis>{{cite web |url=http://www.nasa.gov/vision/universe/starsgalaxies/interstellar_sugar.html |title=Space Sugar's a Sweet Find |first1=Lara |last1=Clemence |last2=Cohen |first2=Jarrett |date=7 February 2005 |work=Goddard Space Flight Center |publisher=NASA |location=Greenbelt, MD |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20160305002758/http://www.nasa.gov/vision/universe/starsgalaxies/interstellar_sugar.html |archivedate=5 March 2016}}</ref>2012年,Jørgensen的团队报告了在一个遥远的恒星系统中发现羟乙醛。该分子是在距离地球400光年的原恒星双星IRAS 16293-2422周围发现的。<ref name="NG-20120829">{{cite news |last=Than |first=Ker |date=30 August 2012 |title=Sugar Found in Space: A Sign of Life? |url=http://news.nationalgeographic.com/news/2012/08/120829-sugar-space-planets-science-life/ |work=National Geographic News |location=Washington, D.C. |publisher=[[National Geographic Society]] |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150714073830/http://news.nationalgeographic.com/news/2012/08/120829-sugar-space-planets-science-life/ |archivedate=14 July 2015}}</ref><ref name="AP-20120829">{{cite news |author=<!--Staff writer(s); no by-line.--> |date=29 August 2012 |title=Sweet! Astronomers spot sugar molecule near star |url=http://apnews.excite.com/article/20120829/DA0V31D80.html |work=[[Excite]] |location=Yonkers, NY |publisher=[[Mindspark Interactive Network]] |agency=[[Associated Press]] |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150714101929/http://apnews.excite.com/article/20120829/DA0V31D80.html |archivedate=14 July 2015}}</ref><ref>{{cite web |url=http://www.news.leiden.edu/news-2012/building-blocks-for-life-found-on-young-star.html |title=Building blocks of life found around young star |author=<!--Staff writer(s); no by-line.--> |date=30 September 2012 |website=News & Events |publisher=[[Leiden University]] |location=Leiden, the Netherlands |accessdate=2013-12-11 |url-status=live |archiveurl=https://web.archive.org/web/20131213135815/http://www.news.leiden.edu/news-2012/building-blocks-for-life-found-on-young-star.html |archivedate=13 December 2013}}</ref>羟乙醛是形成RNA所需要的,RNA的功能与DNA相似。这些发现表明,复杂的有机分子可能在行星形成之前就在恒星系统中形成,最终在行星形成的早期到达年轻行星上。<ref>{{cite journal |last1=Jørgensen |first1=Jes K. |last2=Favre |first2=Cécile |last3=Bisschop |first3=Suzanne E. |last4=Bourke |first4=Tyler L. |last5=van Dishoeck |first5=Ewine F. |authorlink5=Ewine van Dishoeck |last6=Schmalzl |first6=Markus |display-authors=3 |date=2012 |title=Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA |url=http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |journal=The Astrophysical Journal Letters |volume=757 |issue=1 |arxiv=1208.5498 |bibcode=2012ApJ...757L...4J |doi=10.1088/2041-8205/757/1/L4 |accessdate=2015-06-23 |pages=L4 |s2cid=14205612 |url-status=live |archiveurl=https://web.archive.org/web/20150924021240/http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |archivedate=24 September 2015}}</ref><ref name="PNAS-20191113">{{Cite journal|last1=Furukawa|first1=Yoshihiro|last2=Chikaraishi|first2=Yoshito|last3=Ohkouchi|first3=Naohiko|last4=Ogawa|first4=Nanako O.|last5=Glavin|first5=Daniel P.|last6=Dworkin|first6=Jason P.|last7=Abe|first7=Chiaki|last8=Nakamura|first8=Tomoki|date=2019-11-13|title=Extraterrestrial ribose and other sugars in primitive meteorites|journal=Proceedings of the National Academy of Sciences|volume=116|issue=49|pages=24440–24445|language=en|doi=10.1073/pnas.1907169116|issn=0027-8424|pmid=31740594|pmc=6900709|bibcode=2019PNAS..11624440F}}</ref>由于糖类与新陈代谢和遗传密码这两个生命最基本的方面有关,因此认为发现地外糖类增加了银河系其他地方可能存在生命的可能性。<ref name="Hollis" />
   −
彗星外层包裹着深色物质,被认为是一种焦油状物质,由简单的碳化合物经过主要由电离辐射引发的反应后形成的复杂有机物质组成。彗星的物质雨有可能将大量的这种复杂的有机分子带到地球上。在外星形成的氨基酸也可能通过彗星到达地球。据估计,在晚期重型轰炸期间,陨石每年可能向地球输送多达500万吨的有机前生物元素。
     −
==== PAH world hypothesis ====
+
====多聚磷酸盐 ====
   −
多环芳烃世界假说   
+
在大多数非生物发生的情况下,一个问题是氨基酸与肽的热力学平衡是向着分离氨基酸的方向发展的。一直以来,缺少的是某种推动聚合的力量。这个问题的解决很可能在于多聚磷酸盐的特性<ref>{{cite journal |last1=Brown |first1=Michael R. W. |last2=Kornberg |first2=Arthur |authorlink2=Arthur Kornberg |date=16 November 2004 |title=Inorganic polyphosphate in the origin and survival of species |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue=46 |pages=16085–16087 |bibcode=2004PNAS..10116085B |doi=10.1073/pnas.0406909101|pmc=528972 |pmid=15520374}}</ref><ref>{{cite web |url=http://www.science.siu.edu/microbiology/micr425/425Notes/14-OriginLife.html |title=The Origin of Life |last=Clark |first=David P. |date=3 August 1999 |website=Microbiology 425: Biochemistry and Physiology of Microorganism |publisher=College of Science; [[Southern Illinois University Carbondale]] |location=Carbondale, IL |type=Lecture |archiveurl=https://web.archive.org/web/20001002142750/http://www.science.siu.edu/microbiology/micr425/425Notes/14-OriginLife.html |archivedate=2000-10-02 |url-status=dead |accessdate=2015-06-26}}</ref> 。聚磷酸盐是由普通的单磷酸离子PO<sub>4</sub><sup>3-</sup>聚合而成。目前已经研究了几种有机分子合成的机制。多聚磷酸盐能使氨基酸聚合成肽。它们也是合成三磷酸腺苷(ATP)等关键生化化合物的逻辑前体。一个关键的问题似乎是,钙与可溶性磷酸盐反应形成不溶性的磷酸钙(磷灰石),所以必须找到一些似合理的机制来防止钙离子引起磷酸盐的沉淀。多年来,关于这个主题的工作很多,但一个有趣的新想法是,陨石可能在早期地球上引入了活性磷物种。<ref>{{cite journal |last=Pasek |first=Matthew A. |date=22 January 2008 |title=Rethinking early Earth phosphorus geochemistry |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=105 |issue=3 |pages=853–858 |bibcode=2008PNAS..105..853P |doi=10.1073/pnas.0708205105 |pmc=2242691 |pmid=18195373}}</ref>根据最近的计算机模型研究,在地球形成之前,生命所必需的复杂有机分子可能已经在太阳周围的尘粒的原行星盘中形成了。<ref name="Space-20120329">{{cite news |last=Moskowitz |first=Clara |date=29 March 2012 |title=Life's Building Blocks May Have Formed in Dust Around Young Sun |url=http://www.space.com/15089-life-building-blocks-young-sun-dust.html |website=[[Space.com]] |location=Salt Lake City, UT |publisher=[[Purch]] |accessdate=2012-03-30 |url-status=live |archiveurl=https://web.archive.org/web/20120814205056/http://www.space.com/15089-life-building-blocks-young-sun-dust.html |archivedate=14 August 2012}}</ref><ref>{{cite journal|last1=Ciesla|first1=F.J.|last2=Sandford|first2=S.A.|title=Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula|journal=Science|date=29 March 2012|volume=336|issue=6080|pages=452–454|doi=10.1126/science.1217291|pmid=22461502|bibcode=2012Sci...336..452C|hdl=2060/20120011864|s2cid=25454671|hdl-access=free}}</ref> 根据计算机研究,这个相同的过程也可能发生在其他获得行星的恒星周围。
   −
{{Main|PAH world hypothesis}}
     −
[[Polycyclic aromatic hydrocarbon]]s (PAH) are the most common and abundant of the known polyatomic molecules in the [[observable universe]], and are considered a likely constituent of the [[primordial sea]].<ref name="SP-20051018" /><ref name="AJ-20051010" /><ref name="NASA-20110413" /> In 2010, PAHs,  have been detected in [[nebula]]e.<ref name="AJL-20101120">{{cite journal |last1=García-Hernández |first1=Domingo. A. |last2=Manchado |first2=Arturo |last3=García-Lario |first3=Pedro |last4=Stanghellini |first4=Letizia |last5=Villaver |first5=Eva |last6=Shaw |first6=Richard A. |last7=Szczerba |first7=Ryszard |last8=Perea-Calderón |first8=Jose Vicente |display-authors=3 |date=20 November 2010 |title=Formation of Fullerenes in H-Containing Planetary Nebulae |journal=The Astrophysical Journal Letters |volume=724 |issue=1 |pages=L39–L43 |arxiv=1009.4357 |bibcode=2010ApJ...724L..39G |doi=10.1088/2041-8205/724/1/L39 |s2cid=119121764 }}</ref>
+
有机分子在行星表面的积累和集中也被认为是生命起源的一个重要的早期步骤。<ref name="NASA strategy 2015"/>假设分子的非生物生产最终影响了生命涌现的分子选择,那么识别和理解导致在各种环境中产生前生物分子的机制对于建立地球上生命起源的成分清单至关重要。<ref name="NASA strategy 2015"/>
   −
多环芳烃(PAH)是可观测宇宙中已知的多原子分子中最常见、最丰富的一种,被认为是原始海的一种可能成分。
     −
-->
+
2019年,科学家报告首次在陨石中检测到包括核糖在内的糖分子,表明小行星上的化学过程可以产生一些对生命很重要的基本生物原料,并支持地球上以DNA为基础的生命起源之前的RNA世界的概念,也可能支持泛种论的概念。<ref name="NASA-20191118">{{cite news |last1=Steigerwald |first1=Bill |last2=Jones |first2=Nancy |last3=Furukawa |first3=Yoshihiro |title=First Detection of Sugars in Meteorites Gives Clues to Origin of Life |url=https://www.nasa.gov/press-release/goddard/2019/sugars-in-meteorites |date=18 November 2019 |work=[[NASA]] |accessdate=18 November 2019 }}</ref><ref name="PNAS-20191113" />
   −
[[File:PIA22568-CatsPawNebula-Spitzer-20181023.jpg|thumb|upright=1.3|The [[Cat's Paw Nebula]] lies inside the [[Milky Way Galaxy]] and is located in the [[constellation]] [[Scorpius]].<br>Green areas show regions where radiation from hot stars collided with large molecules and small dust grains called "[[polycyclic aromatic hydrocarbon]]s" (PAHs), causing them to [[fluoresce]].<br>([[Spitzer space telescope]], 2018)]]
     −
该猫掌星云位于银河系内并位于星座 天蝎座。绿色区域表示来自热星的辐射与大分子和称为“多环芳烃”(PAHs)的小尘埃碰撞而导致发荧光的区域。
  −
(斯皮策太空望远镜,2018)
     −
Polycyclic aromatic hydrocarbons (PAH) are known to be abundant in the universe,<ref name="SP-20051018">{{cite news |last= Carey |first= Bjorn |date= 18 October 2005 |title= Life's Building Blocks 'Abundant in Space' |url= http://www.space.com/1686-life-building-blocks-abundant-space.html |website= Space.com |location= Watsonville, CA |publisher= [[Imaginova]] |accessdate= 2015-06-23 |url-status= live |archiveurl= https://web.archive.org/web/20150626223942/http://www.space.com/1686-life-building-blocks-abundant-space.html |archivedate= 26 June 2015}}</ref><ref name="AJ-20051010">{{cite journal |last1=Hudgins |first1= Douglas M. |last2=Bauschlicher |first2=Charles W. Jr. |last3=Allamandola |first3=Louis J. |date=10 October 2005 |title=Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population |journal=[[The Astrophysical Journal]] |volume=632 |pages=316–332 |issue=1 |bibcode=2005ApJ...632..316H |doi=10.1086/432495 |citeseerx=10.1.1.218.8786 }}</ref><ref name="NASA-20110413">{{cite web|url=http://amesteam.arc.nasa.gov/Research/cosmic.html |title=Cosmic Distribution of Chemical Complexity |last1=Des Marais |first1=David J. |last2=Allamandola |first2=Louis J. |last3=Sandford |first3=Scott |authorlink3=Scott Sandford |last4=Mattioda |first4=Andrew |last5=Gudipati |first5=Murthy |last6=Roser |first6=Joseph |last7=Bramall |first7=Nathan |last8=Nuevo |first8=Michel |last9=Boersma |first9=Christiaan |last10=Bernstein |first10=Max |last11=Peeters |first11=Els |last12=Cami |first12=Jan |last13=Cook |first13=Jamie Elsila |last14=Dworkin |first14=Jason |display-authors=3 |year=2009 |website=Ames Research Center |publisher=NASA |location=Mountain View, CA |accessdate=2015-06-24 |url-status=dead |archiveurl=https://web.archive.org/web/20140227184503/http://amesteam.arc.nasa.gov/Research/cosmic.html |archivedate=27 February 2014}} See the Ames Research Center 2009 annual team report to the [[NASA Astrobiology Institute]] here {{cite web|url=https://astrobiology.nasa.gov/nai/reports/annual-reports/2009/arc/ |title=Archived copy |accessdate=2015-06-24 |url-status=dead |archiveurl=https://web.archive.org/web/20130301064911/https://astrobiology.nasa.gov/nai/reports/annual-reports/2009/arc/ |archivedate=1 March 2013}}.</ref> including in the [[interstellar medium]], in comets, and in meteorites, and are some of the most complex molecules so far found in space.<ref name="NASA-20140221" />
+
===实验室中的化学合成 ===
   −
众所周知,多环芳烃在宇宙中非常丰富,包括在星际介质、彗星和陨石中,是迄今为止在空间发现的一些最复杂的分子。
+
早在19世纪60年代,就有实验证明,简单的碳源与丰富的无机催化剂相互作用可以产生生物相关的分子。
   −
Other sources of complex molecules have been postulated, including extraterrestrial stellar or interstellar origin. For example, from spectral analyses, organic molecules are known to be present in comets and meteorites. In 2004, a team detected traces of PAHs in a nebula.<ref>{{cite conference |last1=Witt |first1=Adolf N. |last2=Vijh |first2=Uma P. |last3=Gordon |first3=Karl D. |date=January 2004 |title=Discovery of Blue Fluorescence by Polycyclic Aromatic Hydrocarbon Molecules in the Red Rectangle |url=https://aas.org/archives/BAAS/v35n5/aas203/189.htm |publisher=[[American Astronomical Society]] |bibcode=2003AAS...20311017W |archiveurl=https://web.archive.org/web/20031219175322/http://www.aas.org/publications/baas/v35n5/aas203/189.htm |archivedate=19 December 2003 |url-status=dead |conference=American Astronomical Society Meeting 203 |location=Atlanta, GA |access-date=16 January 2019 }}</ref> In 2010, another team also detected PAHs, along with fullerenes, in nebulae.<ref name="AJL-20101120" /> The use of PAHs has also been proposed as a precursor to the RNA world in the PAH world hypothesis.<ref>{{Cite journal|last1=d'Ischia|first1=Marco|last2=Manini|first2=Paola|last3=Moracci|first3=Marco|last4=Saladino|first4=Raffaele|last5=Ball|first5=Vincent|last6=Thissen|first6=Helmut|last7=Evans|first7=Richard A.|last8=Puzzarini|first8=Cristina|last9=Barone|first9=Vincenzo|date=2019-08-21|title=Astrochemistry and Astrobiology: Materials Science in Wonderland?|journal=International Journal of Molecular Sciences|volume=20|issue=17|pages=4079|doi=10.3390/ijms20174079|issn=1422-0067|pmc=6747172|pmid=31438518}}</ref> The [[Spitzer Space Telescope]] has detected a star, HH 46-IR, which is forming by a process similar to that by which the Sun formed. In the disk of material surrounding the star, there is a very large range of molecules, including cyanide compounds, [[hydrocarbon]]s, and carbon monoxide. In 2012, NASA scientists reported that PAHs, subjected to interstellar medium conditions, are transformed, through [[hydrogenation]], [[Oxygenate|oxygenation]] and [[hydroxylation]], to more complex organics—"a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively."<ref name="Space-20120920">{{cite web |url= http://www.space.com/17681-life-building-blocks-nasa-organic-molecules.html |title= NASA Cooks Up Icy Organics to Mimic Life's Origins |date= 20 September 2012 |website= Space.com |location= Ogden, UT |publisher= Purch |accessdate= 2015-06-26 |url-status= live |archiveurl= https://web.archive.org/web/20150625035023/http://www.space.com/17681-life-building-blocks-nasa-organic-molecules.html |archivedate= 25 June 2015}}</ref><ref name="AJL-20120901">{{cite journal |last1=Gudipati |first1=Murthy S. |author2=Rui Yang |date=1 September 2012 |title=In-situ Probing of Radiation-induced Processing of Organics in Astrophysical Ice Analogs – Novel Laser Desorption Laser Ionization Time-of-flight Mass Spectroscopic Studies |journal=The Astrophysical Journal Letters |volume=756 |issue=1 |bibcode=2012ApJ...756L..24G |doi=10.1088/2041-8205/756/1/L24 |pages=L24}}</ref> Further, as a result of these transformations, the PAHs lose their [[Spectroscopy|spectroscopic signature]] which could be one of the reasons "for the lack of PAH detection in [[interstellar ice]] grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks."<ref name="Space-20120920" /><ref name="AJL-20120901" />
     −
复杂分子的其他来源也被推测出来,包括地外恒星或星际起源。例如,根据光谱分析,已知有机分子存在于彗星和陨石中。2004年,一个团队在一个星云中检测到了多环芳烃的痕迹。2010年,另一个团队也在星云中检测到了多环芳烃以及富勒烯。"多环芳烃世界"假说中还提出将多环芳烃作为RNA世界的前导。斯皮策太空望远镜探测到一颗恒星HH 46-IR,它的形成过程与太阳的形成过程相似。在恒星周围的物质盘中,有非常多的分子,包括氰化合物、碳氢化合物和一氧化碳。2012年,美国宇航局的科学家报告说,多环芳烃在星际介质条件下,通过氢化、氧化和羟基化,转化为更复杂的有机物--"分别是向氨基酸和核苷酸(蛋白质和DNA的原料)道路上迈进的一步。 "此外,由于这些转化,多环芳烃失去了它们的光谱特征,这可能是 "星际冰粒,特别是寒冷的稠密云的外部区域或原行星盘的上层分子层中,缺乏检测到多环芳烃的原因之一。"
     −
NASA maintains a database for tracking PAHs in the universe.<ref name="NASA-20140221" /><ref>{{cite web |url=http://www.astrochem.org/pahdb/ |title=NASA Ames PAH IR Spectroscopic Database |publisher=NASA |accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150629185734/http://www.astrochem.org/pahdb/ |archivedate=29 June 2015}}</ref> More than 20% of the carbon in the universe may be associated with PAHs,<ref name="NASA-20140221" /><ref name="NASA-20140221" /> possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the universe,<ref name="SP-20051018" /><ref name="AJ-20051010" /><ref name="NASA-20110413" /> and are associated with [[Star formation|new stars]] and [[exoplanet]]s.<ref name="NASA-20140221" />
+
====福克斯类蛋白====
   −
美国宇航局维护着一个追踪宇宙中多环芳烃的数据库。宇宙中超过20%的碳可能与多环芳烃有关,可能是生命形成的起始材料。多环芳烃似乎是在宇宙大爆炸后不久形成的,在宇宙中广泛存在,并与新的恒星和系外行星有关。
+
在试图发现Bernal提到的非生物发生的中间阶段时,西德尼·福克斯Sidney Fox在20世纪50年代和60年代研究了在地球历史早期可能存在的条件下自发形成的肽结构(小的氨基酸链)。在他的一个实验中,他让氨基酸在前生物条件下,像在温暖干燥的地方搅拌一样变干燥。在一个为生命的形成设置合适条件的实验中,Fox从夏威夷的一个火山灰烬锥状物中收集了火山材料。他发现火山灰烬锥状物表面下4英寸(100毫米)的温度就超过了100 C,并认为这可能是生命诞生的环境--分子可能已经形成,然后通过松散的火山灰被冲入海中。他将一块块的熔岩放在由甲烷、氨和水产生的氨基酸上,对所有材料进行灭菌,并将熔岩放在氨基酸上,在玻璃炉中烘烤几个小时。在表面形成了一种棕色的粘性物质,当把熔岩浸泡在消毒水中时,就会有浓稠的棕色液体渗出。他发现,随着它们的干燥,氨基酸形成了长长的、常常是交联的、线状的、亚显微的多肽分子。<ref name="foxexp"/>
   −
====Nucleobases====
  −
核酸碱基
  −
Observations suggest that the majority of organic compounds introduced on Earth by interstellar dust particles are considered principal agents in the formation of complex molecules, thanks to their peculiar [[catalysis|surface-catalytic]] activities.<ref name="Lincei">{{cite journal |last=Gallori |first=Enzo |title=Astrochemistry and the origin of genetic material |journal=Rendiconti Lincei |date=June 2011 |volume=22 |issue=2 |pages=113–118 |doi=10.1007/s12210-011-0118-4 |s2cid=96659714 }} "Paper presented at the Symposium 'Astrochemistry: molecules in space and time' (Rome, 4–5 November 2010), sponsored by Fondazione 'Guido Donegani', Accademia Nazionale dei Lincei."</ref><ref>{{cite journal |last=Martins |first=Zita |authorlink=Zita Martins |date=February 2011 |title=Organic Chemistry of Carbonaceous Meteorites |journal=[[Elements (journal)|Elements]] |volume=7 |issue=1 |pages=35–40 |doi=10.2113/gselements.7.1.35 }}</ref> Studies reported in 2008, based on <sup>12</sup>C/<sup>13</sup>C [[Natural abundance|isotopic ratios]] of organic compounds found in the Murchison meteorite, suggested that the RNA component uracil and related molecules, including [[xanthine]], were formed extraterrestrially.<ref name="Murch_base">{{cite journal |last1=Martins |first1=Zita |last2=Botta |first2=Oliver |last3=Fogel |first3=Marilyn L. |last4=Sephton |first4=Mark A. |last5=Glavin |first5=Daniel P. |last6=Watson |first6=Jonathan S. |last7=Dworkin |first7=Jason P. |last8=Schwartz |first8=Alan W. |last9=Ehrenfreund |first9=Pascale |display-authors=3 |date=15 June 2008 |title=Extraterrestrial nucleobases in the Murchison meteorite |journal=Earth and Planetary Science Letters |volume=270 |issue=1–2 |pages=130–136 |bibcode=2008E&PSL.270..130M |arxiv=0806.2286 |doi=10.1016/j.epsl.2008.03.026 |s2cid=14309508 }}</ref><ref>{{cite news |author=<!--Staff writer(s); no by-line.--> |date=14 June 2008 |title=We may all be space aliens: study |url=http://www.abc.net.au/news/2008-06-14/we-may-all-be-space-aliens-study/2471434 |location=Sydney |publisher=[[Australian Broadcasting Corporation]] |agency=[[Agence France-Presse]] |accessdate=2015-06-22 |url-status=live |archiveurl=https://web.archive.org/web/20150623073332/http://www.abc.net.au/news/2008-06-14/we-may-all-be-space-aliens-study/2471434 |archivedate=23 June 2015}}</ref> In 2011, a report based on [[NASA]] studies of meteorites found on Earth was published suggesting DNA components (adenine, guanine and related organic molecules) were made in outer space.<ref name="Lincei" /><ref name="Callahan">{{cite journal |last1=Callahan |first1=Michael P. |last2=Smith |first2=Karen E. |last3=Cleaves |first3=H. James, II |last4=Ruzica |first4=Josef |last5=Stern |first5=Jennifer C. |last6=Glavin |first6=Daniel P. |last7=House |first7=Christopher H. |last8=Dworkin |first8=Jason P. |display-authors=3 |date=23 August 2011 |title=Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=34 |pages=13995–13998 |bibcode=2011PNAS..10813995C |doi=10.1073/pnas.1106493108 |pmc=3161613 |pmid=21836052}}</ref><ref name="Steigerwald">{{cite web |url=http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |title=NASA Researchers: DNA Building Blocks Can Be Made in Space |last=Steigerwald |first=John |date=8 August 2011 |work=[[Goddard Space Flight Center]] |publisher=NASA |location=Greenbelt, MD |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150623004556/http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html |archivedate=23 June 2015}}</ref> Scientists also found that the [[cosmic dust]] permeating the universe contains complex organics ("amorphous organic solids with a mixed [[Aromaticity|aromatic]]–[[Aliphatic compound|aliphatic]] structure") that could be created naturally, and rapidly, by stars.<ref name="Space-20111026">{{cite news |last= Chow |first= Denise |date= 26 October 2011 |title= Discovery: Cosmic Dust Contains Organic Matter from Stars |url= http://www.space.com/13401-cosmic-star-dust-complex-organic-compounds.html |website= Space.com |location= Ogden, UT |publisher= Purch |accessdate= 2015-06-23 |url-status= live |archiveurl= https://web.archive.org/web/20150714084901/http://www.space.com/13401-cosmic-star-dust-complex-organic-compounds.html |archivedate= 14 July 2015}}</ref><ref name="ScienceDaily-20111026">{{cite news |author=The University of Hong Kong |date=27 October 2011 |title=Astronomers discover complex organic matter exists throughout the universe |url=https://www.sciencedaily.com/releases/2011/10/111026143721.htm |location=Rockville, MD |publisher= ScienceDaily, LLC |url-status=live |archiveurl=https://web.archive.org/web/20150703185252/https://www.sciencedaily.com/releases/2011/10/111026143721.htm |archivedate=3 July 2015|author-link=University of Hong Kong }}</ref><ref name="Nature-20111026">{{cite journal |author1=Sun Kwok |authorlink1=Sun Kwok |author2=Yong Zhang |date=3 November 2011 |title=Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features |journal=Nature |volume=479 |issue=7371 |pages=80–83 |bibcode=2011Natur.479...80K |doi=10.1038/nature10542 |pmid=22031328|s2cid=4419859 }}</ref> [[Sun Kwok]] of [[University of Hong Kong|The University of Hong Kong]] suggested that these compounds may have been related to the development of life on Earth said that "If this is the case, life on Earth may have had an easier time getting started as these organics can serve as basic ingredients for life."<ref name="Space-20111026" />
     −
观测结果表明,星际尘埃颗粒引入地球的大多数有机化合物被认为是形成复杂分子的主要媒介,这是因为它们具有特殊的表面催化活性。2008年报告的研究基于在默奇森陨石中发现的有机化合物的<sup>12</sup>C/<sup>13</sup>C同位素比率,表明RNA成分尿嘧啶和相关分子,包括黄嘌呤,是在外星形成的。 2011年,发表了一份基于美国宇航局对在地球上发现的陨石的研究的报告,表明DNA成分(腺嘌呤、鸟嘌呤和相关有机分子)是在外太空制造的。 科学家们还发现,弥漫在宇宙中的宇宙尘埃中含有复杂的有机物("具有芳香族-脂肪族混合结构的无定形有机固体"),这些有机物可能是由恒星自然地、迅速地创造出来的。香港大学的郭新 Sun Kwok提出,这些化合物可能与地球上生命的发展有关,他说:"如果是这样的话,地球上的生命可能更容易开始,因为这些有机物可以作为生命的基本原料。"
+
====糖类Sugars====
   −
====The sugar glycolaldehyde====
+
特别是布列特洛夫Butlerov的实验(甲醛聚糖反应)表明,当甲醛在碱性条件下与钙等二价金属离子加热时,会产生四糖、五糖和六糖。1959年,布雷斯洛 Breslow对该反应进行了仔细研究,随后提出该反应是自催化反应。
   −
糖-羟乙醛
     −
[[File:Formation of Glycolaldehyde in star dust.png|thumb|Formation of [[glycolaldehyde]] in [[Cosmic dust|stardust]]]]
+
====核酸碱基====
   −
在星尘中羟乙醇醛的形成
+
类似的实验(见下文)表明,像鸟嘌呤和腺嘌呤这样的核酸碱基可以从简单的碳和氮源如氰化氢和氨合成。
 +
***讨论:我觉得一方面我们要探寻生命起源前化学反应产生生命所需基本原料的可能,另一方面我们还需要知道这些反应发生的几率和量***
   −
Glycolaldehyde, the first example of an interstellar sugar molecule, was detected in the star-forming region near the centre of our galaxy. It was discovered in 2000 by Jes Jørgensen and Jan Hollis.<ref name=Hollis>{{cite web |url=http://www.nasa.gov/vision/universe/starsgalaxies/interstellar_sugar.html |title=Space Sugar's a Sweet Find |first1=Lara |last1=Clemence |last2=Cohen |first2=Jarrett |date=7 February 2005 |work=Goddard Space Flight Center |publisher=NASA |location=Greenbelt, MD |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20160305002758/http://www.nasa.gov/vision/universe/starsgalaxies/interstellar_sugar.html |archivedate=5 March 2016}}</ref> In 2012, Jørgensen's team reported the detection of glycolaldehyde in a distant star system. The molecule was found around the [[protostar|protostellar]] binary [[IRAS 16293-2422]] 400 [[Light-year|light years]] from Earth.<ref name="NG-20120829">{{cite news |last=Than |first=Ker |date=30 August 2012 |title=Sugar Found in Space: A Sign of Life? |url=http://news.nationalgeographic.com/news/2012/08/120829-sugar-space-planets-science-life/ |work=National Geographic News |location=Washington, D.C. |publisher=[[National Geographic Society]] |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150714073830/http://news.nationalgeographic.com/news/2012/08/120829-sugar-space-planets-science-life/ |archivedate=14 July 2015}}</ref><ref name="AP-20120829">{{cite news |author=<!--Staff writer(s); no by-line.--> |date=29 August 2012 |title=Sweet! Astronomers spot sugar molecule near star |url=http://apnews.excite.com/article/20120829/DA0V31D80.html |work=[[Excite]] |location=Yonkers, NY |publisher=[[Mindspark Interactive Network]] |agency=[[Associated Press]] |accessdate=2015-06-23 |url-status=live |archiveurl=https://web.archive.org/web/20150714101929/http://apnews.excite.com/article/20120829/DA0V31D80.html |archivedate=14 July 2015}}</ref><ref>{{cite web |url=http://www.news.leiden.edu/news-2012/building-blocks-for-life-found-on-young-star.html |title=Building blocks of life found around young star |author=<!--Staff writer(s); no by-line.--> |date=30 September 2012 |website=News & Events |publisher=[[Leiden University]] |location=Leiden, the Netherlands |accessdate=2013-12-11 |url-status=live |archiveurl=https://web.archive.org/web/20131213135815/http://www.news.leiden.edu/news-2012/building-blocks-for-life-found-on-young-star.html |archivedate=13 December 2013}}</ref> Glycolaldehyde is needed to form RNA, which is similar in function to DNA. These findings suggest that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.<ref>{{cite journal |last1=Jørgensen |first1=Jes K. |last2=Favre |first2=Cécile |last3=Bisschop |first3=Suzanne E. |last4=Bourke |first4=Tyler L. |last5=van Dishoeck |first5=Ewine F. |authorlink5=Ewine van Dishoeck |last6=Schmalzl |first6=Markus |display-authors=3 |date=2012 |title=Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA |url=http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |journal=The Astrophysical Journal Letters |volume=757 |issue=1 |arxiv=1208.5498 |bibcode=2012ApJ...757L...4J |doi=10.1088/2041-8205/757/1/L4 |accessdate=2015-06-23 |pages=L4 |s2cid=14205612 |url-status=live |archiveurl=https://web.archive.org/web/20150924021240/http://www.eso.org/public/archives/releases/sciencepapers/eso1234/eso1234a.pdf |archivedate=24 September 2015}}</ref><ref name="PNAS-20191113">{{Cite journal|last1=Furukawa|first1=Yoshihiro|last2=Chikaraishi|first2=Yoshito|last3=Ohkouchi|first3=Naohiko|last4=Ogawa|first4=Nanako O.|last5=Glavin|first5=Daniel P.|last6=Dworkin|first6=Jason P.|last7=Abe|first7=Chiaki|last8=Nakamura|first8=Tomoki|date=2019-11-13|title=Extraterrestrial ribose and other sugars in primitive meteorites|journal=Proceedings of the National Academy of Sciences|volume=116|issue=49|pages=24440–24445|language=en|doi=10.1073/pnas.1907169116|issn=0027-8424|pmid=31740594|pmc=6900709|bibcode=2019PNAS..11624440F}}</ref> Because sugars are associated with both metabolism and the [[genetic code]], two of the most basic aspects of life, it is thought the discovery of extraterrestrial sugar increases the likelihood that life may exist elsewhere in our galaxy.<ref name="Hollis" />
+
甲酰胺在各种陆地矿物质存在下升温时,可产生所有四种核糖核苷酸和其他生物分子。甲酰胺在宇宙中无处不在,由水和氰化氢(HCN)反应生成。作为一种生物的前体,它有几个优点,包括通过水的蒸发而容易浓缩的能力。<ref name="Saladino2012">{{cite journal |last1=Saladino |first1=Raffaele |last2=Crestini |first2=Claudia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=March 2012 |title=Formamide and the origin of life. |journal=[[Physics of Life Reviews]] |volume=9 |issue=1 |pages=84–104 |bibcode=2012PhLRv...9...84S |doi=10.1016/j.plrev.2011.12.002 |pmid=22196896|hdl=2108/85168 |url=https://art.torvergata.it/bitstream/2108/85168/1/PoLRev%202012.pdf }}</ref><ref name="Saladino2012b">{{cite journal |last1=Saladino |first1=Raffaele |last2=Botta |first2=Giorgia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=July 2012 |title=From the one-carbon amide formamide to RNA all the steps are prebiotically possible |journal=[[Biochimie]] |volume=94 |issue=7 |pages=1451–1456 |doi=10.1016/j.biochi.2012.02.018 |pmid=22738728}}</ref>虽然HCN是有毒的,但它只影响需氧生物(真核生物和需氧细菌),它们当时还不存在。它也可以在其他化学过程中发挥作用,比如氨基酸甘氨酸的合成。<ref name="Follmann2009" />
   −
羟乙醛是星际糖分子的第一个例子,在银河系中心附近的恒星形成区被发现。它是由詹斯·约根森 Jes Jørgensen和简·霍利斯 Jan Hollis在2000年发现的。2012年,Jørgensen的团队报告了在一个遥远的恒星系统中发现羟乙醛。该分子是在距离地球400光年的原恒星双星IRAS 16293-2422周围发现的。羟乙醛是形成RNA所需要的,RNA的功能与DNA相似。这些发现表明,复杂的有机分子可能在行星形成之前就在恒星系统中形成,最终在行星形成的早期到达年轻行星上。由于糖类与新陈代谢和遗传密码这两个生命最基本的方面有关,因此认为发现地外糖类增加了银河系其他地方可能存在生命的可能性。
     −
==== Polyphosphates ====
+
2015年3月,美国宇航局科学家报告称,在外太空条件下,利用陨石中发现的嘧啶等起始化学物质,首次在实验室中形成了生命的复杂DNA和RNA有机化合物,包括尿嘧啶、胞嘧啶和胸腺嘧啶。嘧啶和多环芳烃一样,是宇宙中发现的最富含碳的化学物质,可能是在红巨星中或星际尘埃和气体云中形成的。<ref name="NASA-20150303">{{cite web |url=http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory |title=NASA Ames Reproduces the Building Blocks of Life in Laboratory |editor-last=Marlaire |editor-first=Ruth |date=3 March 2015 |work=Ames Research Center |publisher=NASA |location=Moffett Field, CA |accessdate=2015-03-05 |url-status=live |archiveurl=https://web.archive.org/web/20150305083306/http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory/ |archivedate=5 March 2015}}</ref>一组捷克科学家报告说,所有四种RNA碱基可能是在如地外撞击等高能密度事件过程中由甲酰胺合成的。<ref>{{cite journal | last1 = Ferus | first1 = Martin | last2 = Nesvorný | first2 = David | last3 = Šponer | first3 = Jiří | last4 = Kubelík | first4 = Petr | last5 = Michalčíková | first5 = Regina | last6 = Shestivská | first6 = Violetta | last7 = Šponer | first7 = Judit E. | last8 = Civiš | first8 = Svatopluk | year = 2015 | title = High-energy chemistry of formamide: A unified mechanism of nucleobase formation | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 112 | issue = 3| pages = 657–662 | doi = 10.1073/pnas.1412072111 | pmid = 25489115 | bibcode = 2015PNAS..112..657F | pmc = 4311869 }}</ref>
多聚磷酸盐
  −
A problem in most scenarios of abiogenesis is that the thermodynamic equilibrium of amino acid versus peptides is in the direction of separate amino acids. What has been missing is some force that drives polymerization. The resolution of this problem may well be in the properties of [[polyphosphate]]s.<ref>{{cite journal |last1=Brown |first1=Michael R. W. |last2=Kornberg |first2=Arthur |authorlink2=Arthur Kornberg |date=16 November 2004 |title=Inorganic polyphosphate in the origin and survival of species |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue=46 |pages=16085–16087 |bibcode=2004PNAS..10116085B |doi=10.1073/pnas.0406909101|pmc=528972 |pmid=15520374}}</ref><ref>{{cite web |url=http://www.science.siu.edu/microbiology/micr425/425Notes/14-OriginLife.html |title=The Origin of Life |last=Clark |first=David P. |date=3 August 1999 |website=Microbiology 425: Biochemistry and Physiology of Microorganism |publisher=College of Science; [[Southern Illinois University Carbondale]] |location=Carbondale, IL |type=Lecture |archiveurl=https://web.archive.org/web/20001002142750/http://www.science.siu.edu/microbiology/micr425/425Notes/14-OriginLife.html |archivedate=2000-10-02 |url-status=dead |accessdate=2015-06-26}}</ref> Polyphosphates are formed by polymerization of ordinary monophosphate ions PO<sub>4</sub><sup>3-</sup>. Several mechanisms of organic molecule synthesis have been investigated. Polyphosphates cause polymerization of amino acids into peptides. They are also logical precursors in the synthesis of such key biochemical compounds as [[adenosine triphosphate]] (ATP). A key issue seems to be that calcium reacts with soluble phosphate to form insoluble [[calcium phosphate]] ([[apatite]]), so some plausible mechanism must be found to keep calcium ions from causing precipitation of phosphate. There has been much work on this topic over the years, but an interesting new idea is that meteorites may have introduced reactive phosphorus species on the early Earth.<ref>{{cite journal |last=Pasek |first=Matthew A. |date=22 January 2008 |title=Rethinking early Earth phosphorus geochemistry |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=105 |issue=3 |pages=853–858 |bibcode=2008PNAS..105..853P |doi=10.1073/pnas.0708205105 |pmc=2242691 |pmid=18195373}}</ref>
     −
Based on recent [[computer simulation|computer model studies]], the [[organic compound|complex organic molecules]] necessary for life may have formed in the [[protoplanetary disk]] of [[cosmic dust|dust grains]] surrounding the [[Sun]] before the formation of the Earth.<ref name="Space-20120329">{{cite news |last=Moskowitz |first=Clara |date=29 March 2012 |title=Life's Building Blocks May Have Formed in Dust Around Young Sun |url=http://www.space.com/15089-life-building-blocks-young-sun-dust.html |website=[[Space.com]] |location=Salt Lake City, UT |publisher=[[Purch]] |accessdate=2012-03-30 |url-status=live |archiveurl=https://web.archive.org/web/20120814205056/http://www.space.com/15089-life-building-blocks-young-sun-dust.html |archivedate=14 August 2012}}</ref><ref>{{cite journal|last1=Ciesla|first1=F.J.|last2=Sandford|first2=S.A.|title=Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula|journal=Science|date=29 March 2012|volume=336|issue=6080|pages=452–454|doi=10.1126/science.1217291|pmid=22461502|bibcode=2012Sci...336..452C|hdl=2060/20120011864|s2cid=25454671|hdl-access=free}}</ref> According to the computer studies, this same process may also occur around other [[star]]s that acquire [[planet]]s. (Also see [[#Extraterrestrial organic molecules|Extraterrestrial organic molecules]]).
     −
在大多数非生物发生的情况下,一个问题是氨基酸与肽的热力学平衡是向着分离氨基酸的方向发展的。一直以来,缺少的是某种推动聚合的力量。这个问题的解决很可能在于多聚磷酸盐的特性。聚磷酸盐是由普通的单磷酸离子PO<sub>4</sub><sup>3-</sup>聚合而成。目前已经研究了几种有机分子合成的机制。多聚磷酸盐能使氨基酸聚合成肽。它们也是合成三磷酸腺苷(ATP)等关键生化化合物的逻辑前体。一个关键的问题似乎是,钙与可溶性磷酸盐反应形成不溶性的磷酸钙(磷灰石),所以必须找到一些似合理的机制来防止钙离子引起磷酸盐的沉淀。多年来,关于这个主题的工作很多,但一个有趣的新想法是,陨石可能在早期地球上引入了活性磷物种。根据最近的计算机模型研究,在地球形成之前,生命所必需的复杂有机分子可能已经在太阳周围的尘粒的原行星盘中形成了。根据计算机研究,这个相同的过程也可能发生在其他获得行星的恒星周围。
+
====使用高温====
   −
The accumulation and concentration of organic molecules on a planetary surface is also considered an essential early step for the origin of life.<ref name="NASA strategy 2015"/> Identifying and understanding the mechanisms that led to the production of prebiotic molecules in various environments is critical for establishing the inventory of ingredients from which life originated on Earth, assuming that the abiotic production of molecules ultimately influenced the selection of molecules from which life emerged.<ref name="NASA strategy 2015"/>
+
1961年,研究表明核酸嘌呤碱基腺嘌呤可以通过加热氰化铵水溶液形成。<ref>{{cite journal |last=Oró |first=Joan |authorlink=Joan Oró |date=16 September 1961 |title=Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions |journal=Nature |volume=191 |issue=4794 |pages=1193–1194 |bibcode=1961Natur.191.1193O |doi=10.1038/1911193a0 |pmid=13731264|s2cid=4276712 }}</ref>
   −
有机分子在行星表面的积累和集中也被认为是生命起源的一个重要的早期步骤。假设分子的非生物生产最终影响了生命涌现的分子选择,那么识别和理解导致在各种环境中产生前生物分子的机制对于建立地球上生命起源的成分清单至关重要。
+
====使用低(极冷的)温====
   −
In 2019, scientists reported detecting, for the first time, [[Sugar|sugar molecules]], including [[ribose]], in [[meteorite]]s, suggesting that chemical processes on [[asteroid]]s can produce some fundamentally essential bio-ingredients important to [[life]], and supporting the notion of an [[RNA world]] prior to a DNA-based origin of life on Earth, and possibly, as well, the notion of [[panspermia]].<ref name="NASA-20191118">{{cite news |last1=Steigerwald |first1=Bill |last2=Jones |first2=Nancy |last3=Furukawa |first3=Yoshihiro |title=First Detection of Sugars in Meteorites Gives Clues to Origin of Life |url=https://www.nasa.gov/press-release/goddard/2019/sugars-in-meteorites |date=18 November 2019 |work=[[NASA]] |accessdate=18 November 2019 }}</ref><ref name="PNAS-20191113" />
+
还有人报道了从无机材料合成碱基的其他途径。<ref name="Basile1984">{{cite journal |last1=Basile |first1=Brenda |last2=Lazcano |first2=Antonio |authorlink2=Antonio Lazcano |last3=Oró |first3=Joan |year=1984 |title=Prebiotic syntheses of purines and pyrimidines |journal=[[Advances in Space Research]] |volume=4 |issue=12 |pages=125–131 |bibcode=1984AdSpR...4..125B |doi=10.1016/0273-1177(84)90554-4 |pmid=11537766}}</ref>Orgel及其同事的研究表明,由于氰化氢等关键前体的浓缩作用,冷冻温度对嘌呤的合成是有利的。<ref>{{cite journal |last=Orgel |first=Leslie E. |date=August 2004 |title=Prebiotic Adenine Revisited: Eutectics and Photochemistry |journal=Origins of Life and Evolution of Biospheres |volume=34 |issue=4 |pages=361–369 |bibcode=2004OLEB...34..361O |doi=10.1023/B:ORIG.0000029882.52156.c2 |pmid=15279171|s2cid=4998122 }}</ref>Miller及其同事的研究表明,腺嘌呤和鸟嘌呤的合成需要冷冻条件,而胞嘧啶和尿嘧啶可能需要沸腾的温度。<ref>{{cite journal |last1=Robertson |first1=Michael P. |last2=Miller |first2=Stanley L. |date=29 June 1995 |title=An efficient prebiotic synthesis of cytosine and uracil |journal=Nature |volume=375 |issue=6534 |pages=772–774 |bibcode=1995Natur.375..772R |doi=10.1038/375772a0 |pmid=7596408|s2cid=4351012 }}</ref>Miller课题组的研究指出,从1972年到1997年,当氨和氰化物被放置在冰柜中时,在冰中形成了7种不同的氨基酸和11种核酸碱基。<ref>{{cite journal |last=Fox |first=Douglas |date=February 2008 |url=http://discovermagazine.com/2008/feb/did-life-evolve-in-ice |title=Did Life Evolve in Ice? |journal=[[Discover (magazine)|Discover]] |accessdate=2008-07-03 |url-status=live |archiveurl=https://web.archive.org/web/20080630043228/http://discovermagazine.com/2008/feb/did-life-evolve-in-ice |archivedate=30 June 2008}}</ref><ref>{{cite journal |last1=Levy |first1=Matthew |last2=Miller |first2=Stanley L. |last3=Brinton |first3=Karen |last4=Bada |first4=Jeffrey L. |authorlink4=Jeffrey L. Bada |date=June 2000 |title=Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions |journal=[[Icarus (journal)|Icarus]] |volume=145 |issue=2 |pages=609–613 |bibcode=2000Icar..145..609L |doi=10.1006/icar.2000.6365 |pmid=11543508}}</ref>其他研究证明了s-三嗪(替代核酸碱基)、嘧啶(包括胞嘧啶和尿嘧啶)和腺嘌呤从尿素溶液在还原性气氛下(以火花放电为能量来源)经过冻融循环形成。<ref>{{cite journal |last1=Menor-Salván |first1=César |last2=Ruiz-Bermejo |first2=Marta |last3=Guzmán |first3=Marcelo I. |last4=Osuna-Esteban |first4=Susana |last5=Veintemillas-Verdaguer |first5=Sabino |date=20 April 2009 |title=Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases |journal=[[Chemistry: A European Journal]] |volume=15 |issue=17 |pages=4411–4418 |doi=10.1002/chem.200802656 |pmid=19288488}}</ref>对于这些反应在如此低的温度下的异常速度,给出的解释是共晶凝固。当冰晶形成时,它保持纯净:只有水分子加入生长的晶体,而盐或氰化物等杂质被排除在外。这些杂质在冰内变得拥挤在微观的液体口袋中,这种拥挤导致分子更频繁地碰撞。利用量子化学方法进行机理探索,可以更详细地了解化学演化中的一些化学过程,并对分子生物发生的基本问题做出部分回答。<ref>{{cite journal |last1=Roy |first1=Debjani |last2=Najafian |first2=Katayoun |last3=von Ragué Schleyer |first3=Paul |authorlink3=Paul von Ragué Schleyer |date=30 October 2007 |title=Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=104 |issue=44 |pages=17272–17277 |bibcode=2007PNAS..10417272R |doi=10.1073/pnas.0708434104|pmc=2077245 |pmid=17951429}}</ref>
   −
2019年,科学家报告首次在陨石中检测到包括核糖在内的糖分子,表明小行星上的化学过程可以产生一些对生命很重要的基本生物原料,并支持地球上以DNA为基础的生命起源之前的RNA世界的概念,也可能支持泛种论的概念。
     −
=== Chemical synthesis in the laboratory===
     −
实验室中的化学合成 
+
====在Miller-Urey实验中使用还原性较低的气体t====
   −
As early as the 1860s, experiments have demonstrated that biologically relevant molecules can be produced from interaction of simple carbon sources with abundant inorganic catalysts.
     −
早在19世纪60年代,就有实验证明,简单的碳源与丰富的无机催化剂相互作用可以产生生物相关的分子。
     −
====Fox proteinoids====
+
At the time of the Miller–Urey experiment, scientific consensus was that the early Earth had a reducing atmosphere with compounds relatively rich in hydrogen and poor in oxygen (e.g., CH<sub>4</sub> and NH<sub>3</sub> as opposed to CO<sub>2</sub> and [[nitrogen dioxide]] (NO<sub>2</sub>)). However, current scientific consensus describes the primitive atmosphere as either weakly reducing or neutral(see also [[Great Oxygenation Event|Oxygen Catastrophe]]). Such an atmosphere would diminish both the amount and variety of amino acids that could be produced, although studies that include [[iron]] and [[carbonate]] minerals (thought present in early oceans) in the experimental conditions have again produced a diverse array of amino acids.
   −
福克斯类蛋白
+
在Miller-Urey实验时,科学界的共识是,早期地球有一个还原性大气层,其化合物中氢气相对丰富,而氧气相对贫乏(如CH<sub>4</sub>和NH<sub>3</sub>,而不是CO<sub>2</sub> 和二氧化氮(NO<sub>2</sub>))。然而,目前的科学共识将原始大气层描述为弱还原性或中性<ref name="Cleaves 2008">{{cite journal |last1=Cleaves |first1=H. James |last2=Chalmers |first2=John H. |last3=Lazcano |first3=Antonio |last4=Miller |first4=Stanley L. |last5=Bada |first5=Jeffrey L. |display-authors=3 |date=April 2008 |title=A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres |journal=Origins of Life and Evolution of Biospheres |volume=38 |issue=2 |pages=105–115 |bibcode=2008OLEB...38..105C |doi=10.1007/s11084-007-9120-3|pmid=18204914|s2cid=7731172 }}</ref><ref name="Chyba 2005">{{cite journal |last=Chyba |first=Christopher F. |s2cid=93303848 |date=13 May 2005 |title=Rethinking Earth's Early Atmosphere |journal=Science |volume=308 |issue=5724 |pages=962–963 |doi=10.1126/science.1113157 |pmid=15890865}}</ref> (另见氧气灾难)。这样的大气会减少可以产生的氨基酸的数量和种类,尽管在实验条件中加入铁和碳酸盐矿物(被认为存在于早期海洋中)的研究又产生了多种氨基酸。其他科学研究集中在另外两种潜在的还原性环境:外太空和深海热喷口。<ref name="Cleaves 2008" /> Other scientific research has focused on two other potential reducing environments: [[outer space]] and deep-sea thermal vents.<ref>{{harvnb|Barton|Briggs|Eisen|Goldstein|2007|pp=93–95}}</ref><ref>{{harvnb|Bada|Lazcano|2009|pp=56–57}}</ref><ref name="Bada 2003">{{cite journal |last1=Bada |first1=Jeffrey L. |last2=Lazcano |first2=Antonio |date=2 May 2003 |url=http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |title=Prebiotic Soup – Revisiting the Miller Experiment |journal=Science |volume=300 |issue=5620 |pages=745–746 |doi=10.1126/science.1085145  |pmid=12730584 |s2cid=93020326 |accessdate=2015-06-13 |url-status=live |archiveurl=https://web.archive.org/web/20160304222002/http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |archivedate=4 March 2016}}</ref>
{{Main|Proteinoid}}
     −
In trying to uncover the intermediate stages of abiogenesis mentioned by Bernal, [[Sidney W. Fox|Sidney Fox]] in the 1950s and 1960s studied the spontaneous formation of [[peptide]] structures (small chains of amino acids) under conditions that might plausibly have existed early in Earth's history. In one of his experiments, he allowed amino acids to dry out as if puddled in a warm, dry spot in prebiotic conditions: In an experiment to set suitable conditions for life to form, Fox collected volcanic material from a [[cinder cone]] in [[Hawaii]]. He discovered that the temperature was over 100 C just {{convert|4|in}} beneath the surface of the cinder cone, and suggested that this might have been the environment in which life was created—molecules could have formed and then been washed through the loose volcanic ash into the sea. He placed lumps of lava over amino acids derived from methane, ammonia and water, sterilized all materials, and baked the lava over the amino acids for a few hours in a glass oven. A brown, sticky substance formed over the surface, and when the lava was drenched in sterilized water, a thick, brown liquid leached out. He found that, as they dried, the amino acids formed long, often cross-linked, thread-like, submicroscopic [[Peptide|polypeptide]] molecules.<ref name="foxexp"/>
     −
在试图发现Bernal提到的非生物发生的中间阶段时,西德尼·福克斯Sidney Fox在20世纪50年代和60年代研究了在地球历史早期可能存在的条件下自发形成的肽结构(小的氨基酸链)。在他的一个实验中,他让氨基酸在前生物条件下,像在温暖干燥的地方搅拌一样变干燥。在一个为生命的形成设置合适条件的实验中,Fox从夏威夷的一个火山灰烬锥状物中收集了火山材料。他发现火山灰烬锥状物表面下4英寸(100毫米)的温度就超过了100 C,并认为这可能是生命诞生的环境--分子可能已经形成,然后通过松散的火山灰被冲入海中。他将一块块的熔岩放在由甲烷、氨和水产生的氨基酸上,对所有材料进行灭菌,并将熔岩放在氨基酸上,在玻璃炉中烘烤几个小时。在表面形成了一种棕色的粘性物质,当把熔岩浸泡在消毒水中时,就会有浓稠的棕色液体渗出。他发现,随着它们的干燥,氨基酸形成了长长的、常常是交联的、线状的、亚显微的多肽分子。
     −
====Sugars====
+
====基于氰化氢的合成====
糖类
  −
In particular, experiments by [[Alexander Butlerov|Butlerov]] (the [[formose reaction]]) showed that tetroses, pentoses, and hexoses are produced when formaldehyde is heated under basic conditions with divalent metal ions like calcium.  The reaction was scrutinized and subsequently proposed to be autocatalytic by Breslow in 1959.
     −
特别是布列特洛夫Butlerov的实验(甲醛聚糖反应)表明,当甲醛在碱性条件下与钙等二价金属离子加热时,会产生四糖、五糖和六糖。1959年,布雷斯洛 Breslow对该反应进行了仔细研究,随后提出该反应是自催化反应。
+
约翰·萨瑟兰 John Sutherland 等人在2015年完成的一个研究项目发现,在紫外线照射的水流中,一个以氰化氢和硫化氢为起点的反应网络,可以产生蛋白质和脂类的化学成分,以及RNA的化学成分,<ref>{{cite news |last=Service |first=Robert F. |date=16 March 2015 |title=Researchers may have solved origin-of-life conundrum |url=http://news.sciencemag.org/biology/2015/03/researchers-may-have-solved-origin-life-conundrum |work=Science |type=News |location=Washington, D.C. |publisher=American Association for the Advancement of Science |accessdate=2015-07-26 |url-status=live |archiveurl=https://web.archive.org/web/20150812103559/http://news.sciencemag.org/biology/2015/03/researchers-may-have-solved-origin-life-conundrum |archivedate=12 August 2015}}</ref><ref name="patel">{{cite journal |last1=Patel |first1=Bhavesh H.|last2=Percivalle |first2=Claudia |last3=Ritson |first3=Dougal J. |last4=Duffy |first4=Colm D. |last5=Sutherland |first5=John D. |authorlink5=John Sutherland (chemist) |date=April 2015 |title=Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism |journal=[[Nature Chemistry]] |volume=7 |issue=4 |pages=301–307 |bibcode=2015NatCh...7..301P |doi=10.1038/nchem.2202 |pmid=25803468 |ref=harv |pmc=4568310}}</ref>同时不产生其他多种化合物。<ref>{{harvnb|Patel|Percivalle|Ritson|Duffy|2015|p=302}}</ref>研究人员用 "氰基硫化物 "一词来描述这个反应网络。<ref name="patel" />
   −
====Nucleobases====
  −
核酸碱基
  −
Similar experiments (see below) demonstrate that nucleobases like guanine and adenine could be synthesized from simple carbon and nitrogen sources like hydrogen cyanide and ammonia.
     −
类似的实验(见下文)表明,像鸟嘌呤和腺嘌呤这样的核酸碱基可以从简单的碳和氮源如氰化氢和氨合成。
+
====实验室合成过程中的问题====
***讨论:我觉得一方面我们要探寻生命起源前化学反应产生生命所需基本原料的可能,另一方面我们还需要知道这些反应发生的几率和量***
  −
[[Formamide]] produces all four ribonucleotides and other biological molecules when warmed in the presence of various terrestrial minerals. Formamide is ubiquitous in the Universe, produced by the reaction of water and [[hydrogen cyanide]] (HCN). It has several advantages as a biotic precursor, including the ability to easily become concentrated through the evaporation of water.<ref name="Saladino2012">{{cite journal |last1=Saladino |first1=Raffaele |last2=Crestini |first2=Claudia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=March 2012 |title=Formamide and the origin of life. |journal=[[Physics of Life Reviews]] |volume=9 |issue=1 |pages=84–104 |bibcode=2012PhLRv...9...84S |doi=10.1016/j.plrev.2011.12.002 |pmid=22196896|hdl=2108/85168 |url=https://art.torvergata.it/bitstream/2108/85168/1/PoLRev%202012.pdf }}</ref><ref name="Saladino2012b">{{cite journal |last1=Saladino |first1=Raffaele |last2=Botta |first2=Giorgia |last3=Pino |first3=Samanta |last4=Costanzo |first4=Giovanna |last5=Di Mauro |first5=Ernesto |display-authors=3 |date=July 2012 |title=From the one-carbon amide formamide to RNA all the steps are prebiotically possible |journal=[[Biochimie]] |volume=94 |issue=7 |pages=1451–1456 |doi=10.1016/j.biochi.2012.02.018 |pmid=22738728}}</ref> Although HCN is poisonous, it only affects [[aerobic organism]]s ([[eukaryote]]s and aerobic bacteria), which did not yet exist. It can play roles in other chemical processes as well, such as the synthesis of the amino acid [[glycine]].<ref name="Follmann2009" />
     −
甲酰胺在各种陆地矿物质存在下升温时,可产生所有四种核糖核苷酸和其他生物分子。甲酰胺在宇宙中无处不在,由水和氰化氢(HCN)反应生成。作为一种生物的前体,它有几个优点,包括通过水的蒸发而容易浓缩的能力。虽然HCN是有毒的,但它只影响需氧生物(真核生物和需氧细菌),它们当时还不存在。它也可以在其他化学过程中发挥作用,比如氨基酸甘氨酸的合成。
+
在"汤"理论提出的条件下,由非生物生成的单体自发形成复杂的聚合物,根本不是一个简单的过程。<ref>{{cite journal |last1=Oró |first1=Joan |last2=Kimball |first2=Aubrey P. |date=February 1962 |title=Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide |journal=[[Archives of Biochemistry and Biophysics]] |volume=96 |issue=2 |pages=293–313 |doi=10.1016/0003-9861(62)90412-5 |pmid=14482339}}</ref>除了必要的基本有机单体外,在Miller-Urey和琼·奥罗 Joan Oró实验过程中,还形成了高浓度的禁止聚合物形成的化合物。例如,Miller-Urey实验会产生许多与氨基酸反应或终止其偶联成肽链的物质。<ref>{{cite book |editor-last=Ahuja |editor-first=Mukesh |year=2006 |chapter=Origin of Life |chapterurl=https://books.google.com/books?id=VJF12TlT58kC&pg=PA11 |title=Life Science |volume=1 |location=Delhi |publisher=Isha Books |page=11 |isbn=978-81-8205-386-1 |oclc=297208106 |ref=harv}}</ref>
   −
In March 2015, NASA scientists reported that, for the first time, complex DNA and RNA organic compounds of life, including uracil, cytosine and [[thymine]], have been formed in the laboratory under outer space conditions, using starting chemicals, such as pyrimidine, found in meteorites. Pyrimidine, like PAHs, the most carbon-rich chemical found in the Universe, may have been formed in [[red giant]] stars or in interstellar dust and gas clouds.<ref name="NASA-20150303">{{cite web |url=http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory |title=NASA Ames Reproduces the Building Blocks of Life in Laboratory |editor-last=Marlaire |editor-first=Ruth |date=3 March 2015 |work=Ames Research Center |publisher=NASA |location=Moffett Field, CA |accessdate=2015-03-05 |url-status=live |archiveurl=https://web.archive.org/web/20150305083306/http://www.nasa.gov/content/nasa-ames-reproduces-the-building-blocks-of-life-in-laboratory/ |archivedate=5 March 2015}}</ref> A group of Czech scientists reported that all four RNA-bases may be synthesized from formamide in the course of high-energy density events like extraterrestrial impacts.<ref>{{cite journal | last1 = Ferus | first1 = Martin | last2 = Nesvorný | first2 = David | last3 = Šponer | first3 = Jiří | last4 = Kubelík | first4 = Petr | last5 = Michalčíková | first5 = Regina | last6 = Shestivská | first6 = Violetta | last7 = Šponer | first7 = Judit E. | last8 = Civiš | first8 = Svatopluk | year = 2015 | title = High-energy chemistry of formamide: A unified mechanism of nucleobase formation | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 112 | issue = 3| pages = 657–662 | doi = 10.1073/pnas.1412072111 | pmid = 25489115 | bibcode = 2015PNAS..112..657F | pmc = 4311869 }}</ref>
     −
2015年3月,美国宇航局科学家报告称,在外太空条件下,利用陨石中发现的嘧啶等起始化学物质,首次在实验室中形成了生命的复杂DNA和RNA有机化合物,包括尿嘧啶、胞嘧啶和胸腺嘧啶。嘧啶和多环芳烃一样,是宇宙中发现的最富含碳的化学物质,可能是在红巨星中或星际尘埃和气体云中形成的。一组捷克科学家报告说,所有四种RNA碱基可能是在如地外撞击等高能密度事件过程中由甲酰胺合成的。
+
=== 自催化 ===
 +
自催化剂是指能催化生产自身的物质,因此是 "分子复制器"。最简单的自我复制化学体系是自催化的,通常包含三个组成部分:一个产物分子和两个前体分子。产物分子将前体分子们连接在一起,反过来由更多的前体分子产生更多的产物分子。产物分子通过提供一个互补的模板来催化反应,该模板与前体结合,从而使它们结合在一起。<ref name="Paul2004">{{cite journal |last1=Paul |first1=Natasha |last2=Joyce |first2=Gerald F. |date=December 2004 |title=Minimal self-replicating systems |journal=Current Opinion in Chemical Biology |volume=8 |issue=6 |pages=634–639 |doi=10.1016/j.cbpa.2004.09.005|pmid=15556408}}</ref><ref name="Bissette2013">{{cite journal |last1=Bissette |first1=Andrew J. |last2=Fletcher |first2=Stephen P. |date=2 December 2013 |title=Mechanisms of Autocatalysis |journal=Angewandte Chemie International Edition |volume=52 |issue=49 |pages=12800–12826 |doi=10.1002/anie.201303822 |pmid=24127341}}</ref>这样的系统在生物大分子和有机小分子中都得到了证明。也观察到了不通过模板机制进行的系统,如胶束和囊泡的自我再生。<ref name="Bissette2013" />
   −
====Use of high temperature====
  −
使用高温
  −
In 1961, it was shown that the nucleic acid [[purine]] base [[adenine]] can be formed by heating aqueous [[ammonium cyanide]] solutions.<ref>{{cite journal |last=Oró |first=Joan |authorlink=Joan Oró |date=16 September 1961 |title=Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions |journal=Nature |volume=191 |issue=4794 |pages=1193–1194 |bibcode=1961Natur.191.1193O |doi=10.1038/1911193a0 |pmid=13731264|s2cid=4276712 }}</ref>
     −
1961年,研究表明核酸嘌呤碱基腺嘌呤可以通过加热氰化铵水溶液形成。
+
有人提出,生命最初是以自催化的化学网络产生的。.<ref>{{harvnb|Kauffman|1993|loc=chpt. 7}}</ref> 英国伦理学家理查德·道金斯 Richard Dawkins在2004年出版的《祖先的故事 The Ancestor's Tale》一书中写道,自催化是生命起源的一种可能的解释。<ref>{{harvnb|Dawkins|2004}}</ref>在书中,Dawkins引用了朱利叶斯·雷贝克 Julius Rebek和他的同事所做的实验,他们将氨基腺苷和五氟苯基酯与自催化剂氨基腺苷三酸酯(AATE)相结合。其中一种产物是AATE的变体,它能催化自身的合成。这一实验表明,自催化剂有可能在具有遗传性的实体种群中表现出竞争,这可以被解释为自然选择的一种基本形式。<ref>{{cite journal |last1=Tjivikua |first1=T. |last2=Ballester |first2=Pablo |last3=Rebek |first3=Julius Jr. |authorlink3=Julius Rebek |date=January 1990 |title=Self-replicating system |journal=[[Journal of the American Chemical Society]] |volume=112 |issue=3 |pages=1249–1250 |doi=10.1021/ja00159a057 }}</ref><ref>{{cite news |last=Browne |first=Malcolm W. |authorlink=Malcolm Browne |date=30 October 1990 |title=Chemists Make Molecule With Hint of Life |url=https://www.nytimes.com/1990/10/30/science/chemists-make-molecule-with-hint-of-life.html |newspaper=The New York Times |location=New York |accessdate=2015-07-14 |url-status=live |archiveurl=https://web.archive.org/web/20150721135740/http://www.nytimes.com/1990/10/30/science/chemists-make-molecule-with-hint-of-life.html |archivedate=21 July 2015}}</ref>
   −
====Use of low (freezing) temperature====
+
== 胶囊化:形态学==
使用低(极冷的)温
  −
Other pathways for synthesizing bases from inorganic materials were also reported.<ref name="Basile1984">{{cite journal |last1=Basile |first1=Brenda |last2=Lazcano |first2=Antonio |authorlink2=Antonio Lazcano |last3=Oró |first3=Joan |year=1984 |title=Prebiotic syntheses of purines and pyrimidines |journal=[[Advances in Space Research]] |volume=4 |issue=12 |pages=125–131 |bibcode=1984AdSpR...4..125B |doi=10.1016/0273-1177(84)90554-4 |pmid=11537766}}</ref> Orgel and colleagues have shown that freezing temperatures are advantageous for the synthesis of purines, due to the concentrating effect for key precursors such as hydrogen cyanide.<ref>{{cite journal |last=Orgel |first=Leslie E. |date=August 2004 |title=Prebiotic Adenine Revisited: Eutectics and Photochemistry |journal=Origins of Life and Evolution of Biospheres |volume=34 |issue=4 |pages=361–369 |bibcode=2004OLEB...34..361O |doi=10.1023/B:ORIG.0000029882.52156.c2 |pmid=15279171|s2cid=4998122 }}</ref> Research by Miller and colleagues suggested that while adenine and [[guanine]] require freezing conditions for synthesis, [[cytosine]] and [[uracil]] may require boiling temperatures.<ref>{{cite journal |last1=Robertson |first1=Michael P. |last2=Miller |first2=Stanley L. |date=29 June 1995 |title=An efficient prebiotic synthesis of cytosine and uracil |journal=Nature |volume=375 |issue=6534 |pages=772–774 |bibcode=1995Natur.375..772R |doi=10.1038/375772a0 |pmid=7596408|s2cid=4351012 }}</ref> Research by the Miller group notes the formation of seven different amino acids and 11 types of [[nucleobase]]s in ice when ammonia and [[cyanide]] were left in a freezer from 1972 to 1997.<ref>{{cite journal |last=Fox |first=Douglas |date=February 2008 |url=http://discovermagazine.com/2008/feb/did-life-evolve-in-ice |title=Did Life Evolve in Ice? |journal=[[Discover (magazine)|Discover]] |accessdate=2008-07-03 |url-status=live |archiveurl=https://web.archive.org/web/20080630043228/http://discovermagazine.com/2008/feb/did-life-evolve-in-ice |archivedate=30 June 2008}}</ref><ref>{{cite journal |last1=Levy |first1=Matthew |last2=Miller |first2=Stanley L. |last3=Brinton |first3=Karen |last4=Bada |first4=Jeffrey L. |authorlink4=Jeffrey L. Bada |date=June 2000 |title=Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions |journal=[[Icarus (journal)|Icarus]] |volume=145 |issue=2 |pages=609–613 |bibcode=2000Icar..145..609L |doi=10.1006/icar.2000.6365 |pmid=11543508}}</ref> Other work demonstrated the formation of s-[[triazine]]s (alternative nucleobases), [[pyrimidine]]s (including cytosine and uracil), and adenine from urea solutions subjected to freeze-thaw cycles under a reductive atmosphere (with spark discharges as an energy source).<ref>{{cite journal |last1=Menor-Salván |first1=César |last2=Ruiz-Bermejo |first2=Marta |last3=Guzmán |first3=Marcelo I. |last4=Osuna-Esteban |first4=Susana |last5=Veintemillas-Verdaguer |first5=Sabino |date=20 April 2009 |title=Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases |journal=[[Chemistry: A European Journal]] |volume=15 |issue=17 |pages=4411–4418 |doi=10.1002/chem.200802656 |pmid=19288488}}</ref> The explanation given for the unusual speed of these reactions at such a low temperature is [[Eutectic system|eutectic freezing]]. As an ice crystal forms, it stays pure: only molecules of water join the growing crystal, while impurities like salt or cyanide are excluded. These impurities become crowded in microscopic pockets of liquid within the ice, and this crowding causes the molecules to collide more often. Mechanistic exploration using quantum chemical methods provide a more detailed understanding of some of the chemical processes involved in chemical evolution, and a partial answer to the fundamental question of molecular biogenesis.<ref>{{cite journal |last1=Roy |first1=Debjani |last2=Najafian |first2=Katayoun |last3=von Ragué Schleyer |first3=Paul |authorlink3=Paul von Ragué Schleyer |date=30 October 2007 |title=Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=104 |issue=44 |pages=17272–17277 |bibcode=2007PNAS..10417272R |doi=10.1073/pnas.0708434104|pmc=2077245 |pmid=17951429}}</ref>
     −
还有人报道了从无机材料合成碱基的其他途径。奥格尔Orgel及其同事的研究表明,由于氰化氢等关键前体的浓缩作用,冷冻温度对嘌呤的合成是有利的。Miller及其同事的研究表明,腺嘌呤和鸟嘌呤的合成需要冷冻条件,而胞嘧啶和尿嘧啶可能需要沸腾的温度。Miller课题组的研究指出,从1972年到1997年,当氨和氰化物被放置在冰柜中时,在冰中形成了7种不同的氨基酸和11种核酸碱基。其他研究证明了s-三嗪(替代核酸碱基)、嘧啶(包括胞嘧啶和尿嘧啶)和腺嘌呤从尿素溶液在还原性气氛下(以火花放电为能量来源)经过冻融循环形成。对于这些反应在如此低的温度下的异常速度,给出的解释是共晶凝固。当冰晶形成时,它保持纯净:只有水分子加入生长的晶体,而盐或氰化物等杂质被排除在外。这些杂质在冰内变得拥挤在微观的液体口袋中,这种拥挤导致分子更频繁地碰撞。利用量子化学方法进行机理探索,可以更详细地了解化学演化中的一些化学过程,并对分子生物发生的基本问题做出部分回答。
+
=== 无膜胶囊化===
   −
====Use of less-reducing gas in Miller–Urey experiment====
+
====Oparin的(细胞)团聚体====
   −
在Miller-Urey实验中使用还原性较低的气体
+
====无膜聚酯液滴====
   −
At the time of the Miller–Urey experiment, scientific consensus was that the early Earth had a reducing atmosphere with compounds relatively rich in hydrogen and poor in oxygen (e.g., CH<sub>4</sub> and NH<sub>3</sub> as opposed to CO<sub>2</sub> and [[nitrogen dioxide]] (NO<sub>2</sub>)). However, current scientific consensus describes the primitive atmosphere as either weakly reducing or neutral<ref name="Cleaves 2008">{{cite journal |last1=Cleaves |first1=H. James |last2=Chalmers |first2=John H. |last3=Lazcano |first3=Antonio |last4=Miller |first4=Stanley L. |last5=Bada |first5=Jeffrey L. |display-authors=3 |date=April 2008 |title=A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres |journal=Origins of Life and Evolution of Biospheres |volume=38 |issue=2 |pages=105–115 |bibcode=2008OLEB...38..105C |doi=10.1007/s11084-007-9120-3|pmid=18204914|s2cid=7731172 }}</ref><ref name="Chyba 2005">{{cite journal |last=Chyba |first=Christopher F. |s2cid=93303848 |date=13 May 2005 |title=Rethinking Earth's Early Atmosphere |journal=Science |volume=308 |issue=5724 |pages=962–963 |doi=10.1126/science.1113157 |pmid=15890865}}</ref> (see also [[Great Oxygenation Event|Oxygen Catastrophe]]). Such an atmosphere would diminish both the amount and variety of amino acids that could be produced, although studies that include [[iron]] and [[carbonate]] minerals (thought present in early oceans) in the experimental conditions have again produced a diverse array of amino acids.<ref name="Cleaves 2008" /> Other scientific research has focused on two other potential reducing environments: [[outer space]] and deep-sea thermal vents.<ref>{{harvnb|Barton|Briggs|Eisen|Goldstein|2007|pp=93–95}}</ref><ref>{{harvnb|Bada|Lazcano|2009|pp=56–57}}</ref><ref name="Bada 2003">{{cite journal |last1=Bada |first1=Jeffrey L. |last2=Lazcano |first2=Antonio |date=2 May 2003 |url=http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |title=Prebiotic Soup – Revisiting the Miller Experiment |journal=Science |volume=300 |issue=5620 |pages=745–746 |doi=10.1126/science.1085145  |pmid=12730584 |s2cid=93020326 |accessdate=2015-06-13 |url-status=live |archiveurl=https://web.archive.org/web/20160304222002/http://astrobiology.berkeley.edu/PDFs_articles/Bada_Science2003.pdf |archivedate=4 March 2016}}</ref>
+
研究人员托尼·贾 Tony Jia和库罕·尚德吕 Kuhan Chandru<ref>{{cite journal |last1=Jia |first1=Tony Z. |last2=Chandru |first2=Kuhan |last3=Hongo |first3=Yayoi |last4=Afrin |first4=Rehana |last5=Usui |first5=Tomohiro |last6=Myojo |first6=Kunihiro |last7=Cleaves |first7=H. James |title=Membraneless polyester microdroplets as primordial compartments at the origins of life |journal=Proceedings of the National Academy of Sciences |volume=116 |issue=32 |date=22 July 2019 |pages=15830–15835 |doi=10.1073/pnas.1902336116|pmid=31332006 |pmc=6690027 }}</ref>提出,无膜聚酯液滴可能在生命起源中发挥了重要作用。<ref>{{Cite journal|last1=Chandru|first1=Kuhan|last2=Mamajanov|first2=Irena|last3=Cleaves|first3=H. James|last4=Jia|first4=Tony Z.|date=January 2020|title=Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry|journal=Life|language=en|volume=10|issue=1|pages=6|doi=10.3390/life10010006|pmc=7175156|pmid=31963928}}</ref>鉴于生命起源以前的化学的 "混乱 "性质,<ref>{{cite web |last1=Marc |first1=Kaufman |title=NASA Astrobiology |url=https://astrobiology.nasa.gov/news/messy-chemistry-a-new-way-to-approach-the-origins-of-life/|date = 18 July 2019 |website=astrobiology.nasa.gov |language=en-EN}}</ref><ref>{{cite journal |last1=Guttenberg |first1=Nicholas |last2=Virgo |first2=Nathaniel |last3=Chandru |first3=Kuhan |last4=Scharf |first4=Caleb |last5=Mamajanov |first5=Irena |title=Bulk measurements of messy chemistries are needed for a theory of the origins of life |journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |date=13 November 2017 |volume=375 |issue=2109 |pages=20160347 |doi=10.1098/rsta.2016.0347|pmid=29133446 |pmc=5686404 |bibcode=2017RSPTA.37560347G }}</ref>这些组合液滴的自然发生可能在脂质小泡革新之前的早期细胞化中发挥了作用。研究表明,在某些聚酯液滴的存在下,液滴内的蛋白质功能和RNA功能得以保存。此外,该液滴具有支架能力,通过允许脂质在其周围组装,可能防止了遗传物质的泄漏。
   −
在Miller-Urey实验时,科学界的共识是,早期地球有一个还原性大气层,其化合物中氢气相对丰富,而氧气相对贫乏(如CH<sub>4</sub>和NH<sub>3</sub>,而不是CO<sub>2</sub> 和二氧化氮(NO<sub>2</sub>))。然而,目前的科学共识将原始大气层描述为弱还原性或中性(另见氧气灾难)。这样的大气会减少可以产生的氨基酸的数量和种类,尽管在实验条件中加入铁和碳酸盐矿物(被认为存在于早期海洋中)的研究又产生了多种氨基酸。其他科学研究集中在另外两种潜在的还原性环境:外太空和深海热喷口。
+
===类蛋白微球体===
   −
====Synthesis based on hydrogen cyanide====
+
Fox在20世纪60年代观察到,他合成的类蛋白可以形成细胞状结构,被命名为 "类蛋白微球体"。<ref name="foxexp">{{cite web |url=http://nitro.biosci.arizona.edu/courses/EEB105/lectures/Origins_of_Life/origins.html |title=Part 4: Experimental studies of the origins of life |last=Walsh |first=J. Bruce |year=1995 |work=Origins of life |publisher=[[University of Arizona]] |location=Tucson, AZ |type=Lecture notes |archiveurl=https://web.archive.org/web/20080113152408/http://nitro.biosci.arizona.edu/courses/EEB105/lectures/Origins_of_Life/origins.html |archivedate=2008-01-13 |accessdate=2015-06-08}}</ref>
   −
基于氰化氢的合成   
     −
A research project completed in 2015 by [[John Sutherland (chemist)|John Sutherland]] and others found that a network of reactions beginning with hydrogen cyanide and hydrogen sulfide, in streams of water irradiated by UV light, could produce the chemical components of proteins and lipids, as well as those of RNA,<ref>{{cite news |last=Service |first=Robert F. |date=16 March 2015 |title=Researchers may have solved origin-of-life conundrum |url=http://news.sciencemag.org/biology/2015/03/researchers-may-have-solved-origin-life-conundrum |work=Science |type=News |location=Washington, D.C. |publisher=American Association for the Advancement of Science |accessdate=2015-07-26 |url-status=live |archiveurl=https://web.archive.org/web/20150812103559/http://news.sciencemag.org/biology/2015/03/researchers-may-have-solved-origin-life-conundrum |archivedate=12 August 2015}}</ref><ref name="patel">{{cite journal |last1=Patel |first1=Bhavesh H.|last2=Percivalle |first2=Claudia |last3=Ritson |first3=Dougal J. |last4=Duffy |first4=Colm D. |last5=Sutherland |first5=John D. |authorlink5=John Sutherland (chemist) |date=April 2015 |title=Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism |journal=[[Nature Chemistry]] |volume=7 |issue=4 |pages=301–307 |bibcode=2015NatCh...7..301P |doi=10.1038/nchem.2202 |pmid=25803468 |ref=harv |pmc=4568310}}</ref> while not producing a wide range of other compounds.<ref>{{harvnb|Patel|Percivalle|Ritson|Duffy|2015|p=302}}</ref> The researchers used the term "cyanosulfidic" to describe this network of reactions.<ref name="patel" />
+
氨基酸组合形成类蛋白,而类蛋白组合成小球,福克斯称之为 "微球体"。他的类蛋白不是细胞,虽然它们形成的团块和链子让人联想到蓝藻,但它们不含任何功能性核酸或任何编码信息。基于这样的实验,科林·布里斯顿 Colin Pittendrigh在1967年说:"实验室将在十年内创造出一个活细胞。"这句话反映了当代人对细胞结构复杂性的典型天真。.<ref>{{harvnb|Woodward|1969|p=287}}</ref>
   −
约翰·萨瑟兰John Sutherland 等人在2015年完成的一个研究项目发现,在紫外线照射的水流中,一个以氰化氢和硫化氢为起点的反应网络,可以产生蛋白质和脂类的化学成分,以及RNA的化学成分,同时不产生其他多种化合物。研究人员用 "氰基硫化物 "一词来描述这个反应网络。
     −
====Issues during laboratory synthesis====
     −
实验室合成过程中的问题
+
===脂质世界===
 +
脂质世界理论认为,第一个自我复制的物体是类脂质的。<ref>{{cite web |url=http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |title=Systems Prebiology-Studies of the origin of Life |last=Lancet |first=Doron |date=30 December 2014 |website=The Lancet Lab |publisher=Department of Molecular Genetics; [[Weizmann Institute of Science]] |location=Rehovot, Israel |accessdate=2015-06-26 |url-status=live |archiveurl=https://web.archive.org/web/20150626180507/http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |archivedate=26 June 2015}}</ref><ref>{{cite journal |last1=Segré |first1=Daniel |last2=Ben-Eli |first2=Dafna |last3=Deamer |first3=David W. |last4=Lancet |first4=Doron |date=February 2001 |title=The Lipid World |url=http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |journal=Origins of Life and Evolution of the Biosphere |volume=31 |issue=1–2 |pages=119–145 |doi=10.1023/A:1006746807104 |pmid=11296516 |bibcode=2001OLEB...31..119S |s2cid=10959497 |accessdate=2008-09-11 |url-status=live |archiveurl=https://web.archive.org/web/20150626225745/http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |archivedate=26 June 2015}}</ref>众所周知,磷脂在水中搅拌时形成脂质双层--与细胞膜的结构相同。这些分子在早期地球上并不存在,但其他两亲性质的长链分子也会形成膜。此外,这些脂质体可能会膨胀(通过插入额外的脂质),在过度膨胀下可能会发生自发的分裂,从而在两个后代中保留了相同的大小和脂质的组成。这一理论的主要观点是,脂质体的分子组成是信息储存的初步方式,进化导致了如RNA或DNA等聚合物实体的出现,它们可能有利地储存信息。迄今为止,对来自潜在的前生物两亲化合物的囊泡的研究还仅限于含有一两种两亲化合物的系统。这与模拟的前生物化学反应的产出形成鲜明对比,前生物化学反应通常会产生非常异质的化合物的混合物。<ref name="Chen 2010" />
   −
The spontaneous formation of complex polymers from abiotically generated monomers under the conditions posited by the "soup" theory is not at all a straightforward process. Besides the necessary basic organic monomers, compounds that would have prohibited the formation of polymers were also formed in high concentration during the Miller–Urey and [[Joan Oró]] experiments.<ref>{{cite journal |last1=Oró |first1=Joan |last2=Kimball |first2=Aubrey P. |date=February 1962 |title=Synthesis of purines under possible primitive earth conditions: II. Purine intermediates from hydrogen cyanide |journal=[[Archives of Biochemistry and Biophysics]] |volume=96 |issue=2 |pages=293–313 |doi=10.1016/0003-9861(62)90412-5 |pmid=14482339}}</ref> The Miller–Urey experiment, for example, produces many substances that would react with the amino acids or terminate their coupling into peptide chains.<ref>{{cite book |editor-last=Ahuja |editor-first=Mukesh |year=2006 |chapter=Origin of Life |chapterurl=https://books.google.com/books?id=VJF12TlT58kC&pg=PA11 |title=Life Science |volume=1 |location=Delhi |publisher=Isha Books |page=11 |isbn=978-81-8205-386-1 |oclc=297208106 |ref=harv}}{{Unreliable source?|reason=What material is Ahuja editing? Further, see use of Ahuja material in the Iron-sulfur world section in this WP article, among others. See also: Wikipedia talk:Noticeboard for India-related topics/Archive 42#Problem with ISHA books as references|date=June 2015}}</ref>
     −
在"汤"理论提出的条件下,由非生物生成的单体自发形成复杂的聚合物,根本不是一个简单的过程。除了必要的基本有机单体外,在Miller-Urey和琼·奥罗 Joan Oró实验过程中,还形成了高浓度的禁止聚合物形成的化合物。例如,Miller-Urey实验会产生许多与氨基酸反应或终止其偶联成肽链的物质。
+
在由各种不同的两亲化合物的混合物组成的脂质双层膜的假设中,这些两亲化合物在膜上的排列中有大量理论上可能的组合的机会。在所有这些潜在的组合中,膜的一个特定的局部排列将有利于超循环的构成,<ref>{{cite journal |last1=Eigen |first1=Manfred |authorlink1=Manfred Eigen |last2=Schuster |first2=Peter |authorlink2=Peter Schuster |date=November 1977 |title=The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |journal=Naturwissenschaften |volume=64 |issue=11 |pages=541–65|bibcode=1977NW.....64..541E |doi=10.1007/bf00450633 |pmid=593400 |accessdate=2015-06-13 |url-status=dead |archiveurl=https://web.archive.org/web/20160303194728/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |archivedate=3 March 2016}}</ref><ref>{{cite journal |last1=Eigen |first1=Manfred |last2=Schuster |first2=Peter |date=July 1978 |title=The Hypercycle. A Principle of Natural Self-Organization. Part C: The Realistic Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |journal=Naturwissenschaften |volume=65 |issue=7 |pages=341–369 |bibcode=1978NW.....65..341E |doi=10.1007/bf00439699 |s2cid=13825356 |accessdate=2015-06-13 |url-status=dead |archiveurl=https://web.archive.org/web/20160616180402/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |archivedate=16 June 2016}}</ref><ref>{{cite journal |last1=Markovitch |first1=Omer |last2=Lancet |first2=Doron |date=Summer 2012 |title=Excess Mutual Catalysis Is Required for Effective Evolvability |journal=[[Artificial Life (journal)|Artificial Life]] |volume=18 |issue=3 |pages=243–266 |doi=10.1162/artl_a_00064|pmid=22662913 |s2cid=5236043 }}</ref> 实际上是由两个相互的催化剂组成的正反馈,由一个膜位点和一个被困在囊泡中的特定化合物代表。这样的位点/化合物对可以传递给子囊泡,从而导致不同的囊泡谱系的出现,这将允许达尔文的自然选择。<ref>{{cite journal |last=Tessera |first=Marc |year=2011 |title=Origin of Evolution ''versus'' Origin of Life: A Shift of Paradigm |journal=[[International Journal of Molecular Sciences]] |volume=12 |issue=6 |pages=3445–3458 |doi=10.3390/ijms12063445 |pmc=3131571 |pmid=21747687}} Special Issue: "Origin of Life 2011"</ref>
=== Autocatalysis ===
+
***讨论:这样的膜位点和化合物对,如何保证遗传性?***
   −
自催化
     −
{{Main|Autocatalysis}}
+
=== 原始细胞 ===
   −
[[Autocatalysis|Autocatalysts]] are substances that catalyze the production of themselves and therefore are "molecular replicators." The simplest self-replicating chemical systems are autocatalytic, and typically contain three components: a product molecule and two precursor molecules. The product molecule joins together the precursor molecules, which in turn produce more product molecules from more precursor molecules. The product molecule catalyzes the reaction by providing a complementary template that binds to the precursors, thus bringing them together. Such systems have been demonstrated both in biological [[macromolecule]]s and in small organic molecules.<ref name="Paul2004">{{cite journal |last1=Paul |first1=Natasha |last2=Joyce |first2=Gerald F. |date=December 2004 |title=Minimal self-replicating systems |journal=Current Opinion in Chemical Biology |volume=8 |issue=6 |pages=634–639 |doi=10.1016/j.cbpa.2004.09.005|pmid=15556408}}</ref><ref name="Bissette2013">{{cite journal |last1=Bissette |first1=Andrew J. |last2=Fletcher |first2=Stephen P. |date=2 December 2013 |title=Mechanisms of Autocatalysis |journal=Angewandte Chemie International Edition |volume=52 |issue=49 |pages=12800–12826 |doi=10.1002/anie.201303822 |pmid=24127341}}</ref> Systems that do not proceed by template mechanisms, such as the self-reproduction of [[micelle]]s and [[Vesicle (biology and chemistry)|vesicles]], have also been observed.<ref name="Bissette2013" />
+
{{Main|Protocell}}
   −
自催化剂是指能催化生产自身的物质,因此是 "分子复制器"。最简单的自我复制化学体系是自催化的,通常包含三个组成部分:一个产物分子和两个前体分子。产物分子将前体分子们连接在一起,反过来由更多的前体分子产生更多的产物分子。产物分子通过提供一个互补的模板来催化反应,该模板与前体结合,从而使它们结合在一起。这样的系统在生物大分子和有机小分子中都得到了证明。也观察到了不通过模板机制进行的系统,如胶束和囊泡的自我再生。
+
[[File:Phospholipids aqueous solution structures.svg|thumb|upright|磷脂在溶液中自发形成的三个主要结构:脂质体(封闭的双层),胶束和双层。]]
   −
It has been proposed that life initially arose as autocatalytic chemical networks.<ref>{{harvnb|Kauffman|1993|loc=chpt. 7}}</ref> British [[ethologist]] [[Richard Dawkins]] wrote about autocatalysis as a potential explanation for the origin of life in his 2004 book ''[[The Ancestor's Tale]]''.<ref>{{harvnb|Dawkins|2004}}</ref> In his book, Dawkins cites experiments performed by [[Julius Rebek]] and his colleagues in which they combined amino adenosine and [[pentafluorophenyl esters]] with the autocatalyst amino adenosine triacid ester (AATE). One product was a variant of AATE, which catalyzed the synthesis of themselves. This experiment demonstrated the possibility that autocatalysts could exhibit competition within a population of entities with heredity, which could be interpreted as a rudimentary form of natural selection.<ref>{{cite journal |last1=Tjivikua |first1=T. |last2=Ballester |first2=Pablo |last3=Rebek |first3=Julius Jr. |authorlink3=Julius Rebek |date=January 1990 |title=Self-replicating system |journal=[[Journal of the American Chemical Society]] |volume=112 |issue=3 |pages=1249–1250 |doi=10.1021/ja00159a057 }}</ref><ref>{{cite news |last=Browne |first=Malcolm W. |authorlink=Malcolm Browne |date=30 October 1990 |title=Chemists Make Molecule With Hint of Life |url=https://www.nytimes.com/1990/10/30/science/chemists-make-molecule-with-hint-of-life.html |newspaper=The New York Times |location=New York |accessdate=2015-07-14 |url-status=live |archiveurl=https://web.archive.org/web/20150721135740/http://www.nytimes.com/1990/10/30/science/chemists-make-molecule-with-hint-of-life.html |archivedate=21 July 2015}}</ref>
+
原始细胞是一种自组织、自排序、球形的脂质集合,被提议作为生命起源的踏脚石。<ref name="Chen 2010">{{cite journal |first1=Irene A. |last1=Chen |first2=Peter |last2=Walde |title=From Self-Assembled Vesicles to Protocells |journal=Cold Spring Harbor Perspectives in Biology |date=July 2010 |volume=2 |issue=7 |page=a002170 |doi=10.1101/cshperspect.a002170 |pmc=2890201 |pmid=20519344}}</ref>进化论中的一个核心问题是简单的原始细胞是如何首先产生的,并对下一代的繁殖贡献不同,推动生命的进化。虽然在实验室环境中还没有实现功能性的原始细胞,但有科学家认为这个目标是可以实现的。<ref name="Exploring">{{cite web |url=http://exploringorigins.org/protocells.html |title=Exploring Life's Origins: Protocells |website=Exploring Life's Origins: A Virtual Exhibit |publisher=National Science Foundation |location=Arlington County, VA |accessdate=2014-03-18 |url-status=live |archiveurl=https://web.archive.org/web/20140228083459/http://exploringorigins.org/protocells.html |archivedate=28 February 2014}}</ref><ref name="Chen 2006">{{cite journal |last=Chen |first=Irene A. |date=8 December 2006 |title=The Emergence of Cells During the Origin of Life |journal=Science |volume=314 |issue=5805 |pages=1558–1559 |doi=10.1126/science.1137541 |pmid=17158315 |doi-access=free }}</ref><ref name="Discover 2004">{{cite journal |last=Zimmer |first=Carl |authorlink=Carl Zimmer |date=26 June 2004 |title=What Came Before DNA? |url=http://discovermagazine.com/2004/jun/cover |journal=Discover  |url-status=live |archiveurl=https://web.archive.org/web/20140319001351/http://discovermagazine.com/2004/jun/cover |archivedate=19 March 2014}}</ref>
   −
有人提出,生命最初是以自催化的化学网络产生的。英国伦理学家理查德·道金斯 Richard Dawkins在2004年出版的《祖先的故事》(The Ancestor's Tale)一书中写道,自催化是生命起源的一种可能的解释。在书中,Dawkins引用了朱利叶斯·雷贝克 Julius Rebek和他的同事所做的实验,他们将氨基腺苷和五氟苯基酯与自催化剂氨基腺苷三酸酯(AATE)相结合。其中一种产物是AATE的变体,它能催化自身的合成。这一实验表明,自催化剂有可能在具有遗传性的实体种群中表现出竞争,这可以被解释为自然选择的一种基本形式。
     −
== Encapsulation: morphology ==
+
自组装囊泡是原始细胞的必要组成部分。<ref name="Chen 2010" />热力学第二定律要求宇宙向熵增加的方向运动,然但生命以其组织程度高而著称。因此,需要一个边界来将生命过程与非生命物质分开。<ref name="SciAm 2007">{{cite journal |last=Shapiro |first=Robert |authorlink=Robert Shapiro (chemist) |date=June 2007 |title=A Simpler Origin for Life |url=http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |journal=Scientific American |volume=296 |issue=6 |pages=46–53 |doi=10.1038/scientificamerican0607-46 |pmid=17663224 |accessdate=2015-06-15 |bibcode=2007SciAm.296f..46S |url-status=live |archiveurl=https://web.archive.org/web/20150614000643/http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |archivedate=14 June 2015}}</ref>研究人员艾琳·陈 Irene Chen和绍斯塔克 Szostak等人认为,基本原细胞的简单物理化学特性可以引起基本的细胞行为,包括原始形式的差异繁殖竞争和能量储存。膜与包裹物之间的这种合作相互作用可以大大简化从简单复制分子到真正细胞的过渡。<ref name="Chen 2006" /> 此外,对膜分子的竞争将有利于稳定的膜,这表明交联脂肪酸甚至今天的磷脂的进化具有选择性优势。 <ref name="Chen 2006" /> 这种微胶囊将允许膜内的新陈代谢,小分子的交换,但防止大物质穿过膜。<ref>{{harvnb|Chang|2007}}</ref> 胶囊化的主要优势包括胶囊内所含货物的溶解度增加,以及以电化学梯度的形式储存能量。讨论***为什么胶囊内的货物的溶解度会增加呢?***
胶囊化:形态学
  −
{{see also|Evolution of cells}}
     −
=== Encapsulation without a membrane ===
+
A 2012 study led by Mulkidjanian of the [[University of Osnabrück]], suggests that inland pools of condensed and cooled geothermal vapor have the ideal characteristics for the origin of life Scientists confirmed in 2002 that by adding a [[montmorillonite]] clay to a solution of fatty acid micelles (lipid spheres), the clay sped up the rate of vesicles formation 100-fold. Furthermore, recent studies have found that the repeated actions of dehydration and rehydration trapped biomolecules like RNA inside the lipid protocells found within hot springs and providing the necessary preconditions for evolution by natural selection
无膜胶囊化
  −
====Oparin's coacervate====
  −
Oparin的(细胞)团聚体
  −
====Membraneless polyester droplets====
     −
无膜聚酯液滴 
+
奥斯纳布吕克大学的穆尔基贾尼安 Mulkidjanian领导的一项2012年的研究表明,冷凝和冷却的地热蒸汽的内陆池具有生命起源的理想特征。.<ref name="Switek 2012">{{cite news |last=Switek |first=Brian |date=13 February 2012 |title=Debate bubbles over the origin of life |work=Nature |location=London |publisher=Nature Publishing Group |doi=10.1038/nature.2012.10024}}</ref>科学家在2002年证实,通过在脂肪酸胶束(脂质球)溶液中加入蒙脱石粘土,粘土将囊泡形成的速度加快了100倍。<ref name="Discover 2004" />此外,最近的研究还发现,脱水和补水的反复作用将RNA等生物分子困在了温泉内发现的脂质原始细胞内,为自然选择的进化提供了必要的前提条件。.<ref>{{Cite web|last=z3530495|date=2020-05-05|title='When chemistry became biology': looking for the origins of life in hot springs|url=https://newsroom.unsw.edu.au/news/science-tech/when-chemistry-became-biology-looking-origins-life-hot-springs|access-date=2020-10-12|website=UNSW Newsroom}}</ref>
   −
Researchers Tony Jia and Kuhan Chandru<ref>{{cite journal |last1=Jia |first1=Tony Z. |last2=Chandru |first2=Kuhan |last3=Hongo |first3=Yayoi |last4=Afrin |first4=Rehana |last5=Usui |first5=Tomohiro |last6=Myojo |first6=Kunihiro |last7=Cleaves |first7=H. James |title=Membraneless polyester microdroplets as primordial compartments at the origins of life |journal=Proceedings of the National Academy of Sciences |volume=116 |issue=32 |date=22 July 2019 |pages=15830–15835 |doi=10.1073/pnas.1902336116|pmid=31332006 |pmc=6690027 }}</ref> have proposed that membraneless polyesters droplets could have been significant in the Origins of Life.<ref>{{Cite journal|last1=Chandru|first1=Kuhan|last2=Mamajanov|first2=Irena|last3=Cleaves|first3=H. James|last4=Jia|first4=Tony Z.|date=January 2020|title=Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry|journal=Life|language=en|volume=10|issue=1|pages=6|doi=10.3390/life10010006|pmc=7175156|pmid=31963928}}</ref> Given the "messy" nature of prebiotic chemistry,<ref>{{cite web |last1=Marc |first1=Kaufman |title=NASA Astrobiology |url=https://astrobiology.nasa.gov/news/messy-chemistry-a-new-way-to-approach-the-origins-of-life/|date = 18 July 2019 |website=astrobiology.nasa.gov |language=en-EN}}</ref><ref>{{cite journal |last1=Guttenberg |first1=Nicholas |last2=Virgo |first2=Nathaniel |last3=Chandru |first3=Kuhan |last4=Scharf |first4=Caleb |last5=Mamajanov |first5=Irena |title=Bulk measurements of messy chemistries are needed for a theory of the origins of life |journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |date=13 November 2017 |volume=375 |issue=2109 |pages=20160347 |doi=10.1098/rsta.2016.0347|pmid=29133446 |pmc=5686404 |bibcode=2017RSPTA.37560347G }}</ref> the spontaneous generation of these combinatorial droplets may have played a role in early cellularization before the innovation of lipid vesicles. Protein function within and RNA function in the presence of certain polyester droplets was shown to be preserved within the droplets. Additionally, the droplets have scaffolding ability, by allowing lipids to assemble around them that may have prevented leakage of genetic materials.
     −
研究人员托尼·贾 Tony Jia和库罕·尚德吕 Kuhan Chandru提出,无膜聚酯液滴可能在生命起源中发挥了重要作用。鉴于生命起源以前的化学的 "混乱 "性质,这些组合液滴的自然发生可能在脂质小泡革新之前的早期细胞化中发挥了作用。研究表明,在某些聚酯液滴的存在下,液滴内的蛋白质功能和RNA功能得以保存。此外,该液滴具有支架能力,通过允许脂质在其周围组装,可能防止了遗传物质的泄漏。
     −
=== Proteinoid microspheres ===
+
=== 淡水中脂质泡的形成===
类蛋白微球体
  −
Fox observed in the 1960s that the proteinoids that he had synthesized could form cell-like structures that have been named "[[Proteinoid|proteinoid microspheres]]".<ref name="foxexp">{{cite web |url=http://nitro.biosci.arizona.edu/courses/EEB105/lectures/Origins_of_Life/origins.html |title=Part 4: Experimental studies of the origins of life |last=Walsh |first=J. Bruce |year=1995 |work=Origins of life |publisher=[[University of Arizona]] |location=Tucson, AZ |type=Lecture notes |archiveurl=https://web.archive.org/web/20080113152408/http://nitro.biosci.arizona.edu/courses/EEB105/lectures/Origins_of_Life/origins.html |archivedate=2008-01-13 |accessdate=2015-06-08}}</ref>
     −
Fox在20世纪60年代观察到,他合成的类蛋白可以形成细胞状结构,被命名为 "类蛋白微球体"。
+
布鲁斯·达默 Bruce Damer和大卫·迪默 David Deamer得出的结论是,细胞膜不可能在咸咸的海水中形成,因此必须起源于淡水。在大陆形成之前,地球上唯一干燥的陆地应该是火山岛,雨水会在那里形成池塘,脂质可以在那里形成走向细胞膜的第一个阶段。这些真正细胞的前身被认为表现得更像一个超个体,而不是个体的结构,多孔的膜会容纳分子,这些分子会漏出并进入其他原细胞。只有当真细胞进化后,它们才会逐渐适应较咸的环境,进入海洋。<ref>{{cite journal |last1=Damer |first1=Bruce |last2=Deamer |first2=David |date=13 March 2015 |title=Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life |journal=Life |volume=5 |issue=1 |pages=872–887 |doi=10.3390/life5010872 |pmc=4390883 |pmid=25780958}}</ref>
   −
The amino acids had combined to form [[proteinoid]]s, and the proteinoids had combined to form small globules that Fox called "microspheres". His proteinoids were not cells, although they formed clumps and chains reminiscent of [[cyanobacteria]], but they contained no functional [[nucleic acid]]s or any encoded information. Based upon such experiments, [[Colin Pittendrigh]] stated in 1967 that "laboratories will be creating a living cell within ten years," a remark that reflected the typical contemporary naivety about the complexity of cell structures.<ref>{{harvnb|Woodward|1969|p=287}}</ref>
     −
氨基酸组合形成类蛋白,而类蛋白组合成小球,福克斯称之为 "微球体"。他的类蛋白不是细胞,虽然它们形成的团块和链子让人联想到蓝藻,但它们不含任何功能性核酸或任何编码信息。基于这样的实验,科林·布里斯顿 Colin Pittendrigh在1967年说:"实验室将在十年内创造出一个活细胞。"这句话反映了当代人对细胞结构复杂性的典型天真。
     −
=== Lipid world ===
+
=== 由RNA类生化物质的混合物组成的囊泡===
   −
脂质世界
     −
{{Main|Gard model}}
+
Another protocell model is the [[Jeewanu]]. First synthesized in 1963 from simple minerals and basic organics while exposed to sunlight, it is still reported to have some metabolic capabilities, the presence of [[semipermeable membrane]], amino acids, phospholipids, [[carbohydrate]]s and RNA-like molecules. However, the nature and properties of the Jeewanu remains to be clarified.
   −
The [[Gard model|lipid world]] theory postulates that the first self-replicating object was [[lipid]]-like.<ref>{{cite web |url=http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |title=Systems Prebiology-Studies of the origin of Life |last=Lancet |first=Doron |date=30 December 2014 |website=The Lancet Lab |publisher=Department of Molecular Genetics; [[Weizmann Institute of Science]] |location=Rehovot, Israel |accessdate=2015-06-26 |url-status=live |archiveurl=https://web.archive.org/web/20150626180507/http://www.weizmann.ac.il/molgen/Lancet/research/prebiotic-evolution |archivedate=26 June 2015}}</ref><ref>{{cite journal |last1=Segré |first1=Daniel |last2=Ben-Eli |first2=Dafna |last3=Deamer |first3=David W. |last4=Lancet |first4=Doron |date=February 2001 |title=The Lipid World |url=http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |journal=Origins of Life and Evolution of the Biosphere |volume=31 |issue=1–2 |pages=119–145 |doi=10.1023/A:1006746807104 |pmid=11296516 |bibcode=2001OLEB...31..119S |s2cid=10959497 |accessdate=2008-09-11 |url-status=live |archiveurl=https://web.archive.org/web/20150626225745/http://www.weizmann.ac.il/molgen/Lancet/sites/molgen.Lancet/files/uploads/segre_lipid_world.pdf |archivedate=26 June 2015}}</ref> It is known that phospholipids form [[lipid bilayer]]s in water while under agitation—the same structure as in cell membranes. These molecules were not present on early Earth, but other [[Amphiphile|amphiphilic]] long-chain molecules also form membranes. Furthermore, these bodies may expand (by insertion of additional lipids), and under excessive expansion may undergo spontaneous splitting which preserves the same size and composition of lipids in the two [[Offspring|progenies]]. The main idea in this theory is that the molecular composition of the lipid bodies is the preliminary way for information storage, and evolution led to the appearance of polymer entities such as RNA or DNA that may store information favourably. Studies on vesicles from potentially prebiotic amphiphiles have so far been limited to systems containing one or two types of amphiphiles. This in contrast to the output of simulated prebiotic chemical reactions, which typically produce very heterogeneous mixtures of compounds.<ref name="Chen 2010" />
+
另一种原细胞模型是Jeewanu。1963年首次由简单的矿物质和基本有机物在阳光下合成,据报道,它仍具有一定的新陈代谢能力,存在半透膜、氨基酸、磷脂、碳水化合物和RNA类分子。<ref name="Grote 2011">{{cite journal |last=Grote |first=Mathias |date=September 2011 |title=''Jeewanu'', or the 'particles of life' |url=http://www.ias.ac.in/jbiosci/grote_3677.pdf |journal=[[Journal of Biosciences]] |volume=36 |issue=4 |pages=563–570 |doi=10.1007/s12038-011-9087-0 |pmid=21857103 |s2cid=19551399 |accessdate=2015-06-15 |url-status=live |archiveurl=https://web.archive.org/web/20150924050938/http://www.ias.ac.in/jbiosci/grote_3677.pdf |archivedate=24 September 2015}}</ref><ref name="Gupta 2013">{{cite journal |last1=Gupta |first1=V.K. |last2=Rai |first2=R.K. |date=August 2013 |title=Histochemical localisation of RNA-like material in photochemically formed self-sustaining, abiogenic supramolecular assemblies 'Jeewanu' |url=https://www.academia.edu/9439398 |journal=International Research Journal of Science & Engineering |volume=1 |issue=1 |pages=1–4|accessdate=2015-06-15 |url-status=live |archiveurl=https://web.archive.org/web/20170628001930/http://www.academia.edu/9439398/Histochemical_Localisation_of_RNA_like_material_in_photochemically_formed_self-sustaining_abiogenic_supramolecular_assemblis_Jeewanu_ |archivedate=28 June 2017}}</ref>然而,Jeewanu 的性质和特性仍有待澄清。
   −
脂质世界理论认为,第一个自我复制的物体是类脂质的。众所周知,磷脂在水中搅拌时形成脂质双层--与细胞膜的结构相同。这些分子在早期地球上并不存在,但其他两亲性质的长链分子也会形成膜。此外,这些脂质体可能会膨胀(通过插入额外的脂质),在过度膨胀下可能会发生自发的分裂,从而在两个后代中保留了相同的大小和脂质的组成。这一理论的主要观点是,脂质体的分子组成是信息储存的初步方式,进化导致了如RNA或DNA等聚合物实体的出现,它们可能有利地储存信息。迄今为止,对来自潜在的前生物两亲化合物的囊泡的研究还仅限于含有一两种两亲化合物的系统。这与模拟的前生物化学反应的产出形成鲜明对比,前生物化学反应通常会产生非常异质的化合物的混合物。
     −
Within the hypothesis of a lipid bilayer membrane composed of a mixture of various distinct amphiphilic compounds there is the opportunity of a huge number of theoretically possible combinations in the arrangements of these amphiphiles in the membrane. Among all these potential combinations, a specific local arrangement of the membrane would have favoured the constitution of a hypercycle,<ref>{{cite journal |last1=Eigen |first1=Manfred |authorlink1=Manfred Eigen |last2=Schuster |first2=Peter |authorlink2=Peter Schuster |date=November 1977 |title=The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |journal=Naturwissenschaften |volume=64 |issue=11 |pages=541–65|bibcode=1977NW.....64..541E |doi=10.1007/bf00450633 |pmid=593400 |accessdate=2015-06-13 |url-status=dead |archiveurl=https://web.archive.org/web/20160303194728/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1977Naturwissenschaften64.pdf |archivedate=3 March 2016}}
+
由长度为7个氨基酸或更少的带正电荷的疏水性短肽引起的静电相互作用,可以将RNA附着在囊膜上,即基本细胞膜上。<ref>{{cite news |last=Welter |first=Kira |date=10 August 2015 |title=Peptide glue may have held first protocell components together |url=http://www.rsc.org/chemistryworld/2015/08/peptide-glue-rna-may-have-held-first-protocells-together |work=Chemistry World |type=News |location=London |publisher=Royal Society of Chemistry  |accessdate= 2015-08-29 |url-status=live |archiveurl=https://web.archive.org/web/20150905234238/http://www.rsc.org/chemistryworld/2015/08/peptide-glue-rna-may-have-held-first-protocells-together |archivedate=5 September 2015}}</ref><ref>{{cite journal |last1=Kamat |first1=Neha P. |last2=Tobé |first2=Sylvia |last3=Hill |first3=Ian T. |last4=Szostak |first4=Jack W. |authorlink4=Jack W. Szostak |title=Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides |date=29 July 2015 |journal=Angewandte Chemie International Edition |doi=10.1002/anie.201505742 |pmid=26223820 |pmc=4600236 |volume=54 |issue=40 |pages=11735–11739}}</ref>
   −
在由各种不同的两亲化合物的混合物组成的脂质双层膜的假设中,这些两亲化合物在膜上的排列中有大量理论上可能的组合的机会。在所有这些潜在的组合中,膜的一个特定的局部排列将有利于超循环的构成,
     −
* {{cite journal |last1=Eigen |first1=Manfred |last2=Schuster |first2=Peter |date=July 1978 |title=The Hypercycle. A Principle of Natural Self-Organization. Part C: The Realistic Hypercycle |url=http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |journal=Naturwissenschaften |volume=65 |issue=7 |pages=341–369 |bibcode=1978NW.....65..341E |doi=10.1007/bf00439699 |s2cid=13825356 |accessdate=2015-06-13 |url-status=dead |archiveurl=https://web.archive.org/web/20160616180402/http://jaguar.biologie.hu-berlin.de/~wolfram/pages/seminar_theoretische_biologie_2007/literatur/schaber/Eigen1978Naturwissenschaften65b.pdf |archivedate=16 June 2016}}</ref><ref>{{cite journal |last1=Markovitch |first1=Omer |last2=Lancet |first2=Doron |date=Summer 2012 |title=Excess Mutual Catalysis Is Required for Effective Evolvability |journal=[[Artificial Life (journal)|Artificial Life]] |volume=18 |issue=3 |pages=243–266 |doi=10.1162/artl_a_00064|pmid=22662913 |s2cid=5236043 }}</ref> actually a positive [[feedback]] composed of two mutual catalysts represented by a membrane site and a specific compound trapped in the vesicle. Such site/compound pairs are transmissible to the daughter vesicles leading to the emergence of distinct [[Lineage (evolution)|lineages]] of vesicles which would have allowed Darwinian natural selection.<ref>{{cite journal |last=Tessera |first=Marc |year=2011 |title=Origin of Evolution ''versus'' Origin of Life: A Shift of Paradigm |journal=[[International Journal of Molecular Sciences]] |volume=12 |issue=6 |pages=3445–3458 |doi=10.3390/ijms12063445 |pmc=3131571 |pmid=21747687}} Special Issue: "Origin of Life 2011"</ref>
+
=== 金属硫化物沉淀物===
   −
实际上是由两个相互的催化剂组成的正反馈,由一个膜位点和一个被困在囊泡中的特定化合物代表。这样的位点/化合物对可以传递给子囊泡,从而导致不同的囊泡谱系的出现,这将允许达尔文的自然选择。
  −
***讨论:这样的膜位点和化合物对,如何保证遗传性?***
  −
=== Protocells ===
  −
原始细胞
  −
{{Main|Protocell}}
  −
  −
[[File:Phospholipids aqueous solution structures.svg|thumb|upright|The three main structures [[phospholipid]]s form spontaneously in solution: the [[liposome]] (a closed bilayer), the [[micelle]] and the bilayer.]]
  −
  −
磷脂在溶液中自发形成的三个主要结构:脂质体(封闭的双层),胶束和双层。
  −
  −
A protocell is a self-organized, self-ordered, spherical collection of [[lipid]]s proposed as a stepping-stone to the origin of life.<ref name="Chen 2010">{{cite journal |first1=Irene A. |last1=Chen |first2=Peter |last2=Walde |title=From Self-Assembled Vesicles to Protocells |journal=Cold Spring Harbor Perspectives in Biology |date=July 2010 |volume=2 |issue=7 |page=a002170 |doi=10.1101/cshperspect.a002170 |pmc=2890201 |pmid=20519344}}</ref> A central question in evolution is how simple protocells first arose and differed in reproductive contribution to the following generation driving the evolution of life. Although a functional protocell has not yet been achieved in a laboratory setting, there are scientists who think the goal is well within reach.<ref name="Exploring">{{cite web |url=http://exploringorigins.org/protocells.html |title=Exploring Life's Origins: Protocells |website=Exploring Life's Origins: A Virtual Exhibit |publisher=National Science Foundation |location=Arlington County, VA |accessdate=2014-03-18 |url-status=live |archiveurl=https://web.archive.org/web/20140228083459/http://exploringorigins.org/protocells.html |archivedate=28 February 2014}}</ref><ref name="Chen 2006">{{cite journal |last=Chen |first=Irene A. |date=8 December 2006 |title=The Emergence of Cells During the Origin of Life |journal=Science |volume=314 |issue=5805 |pages=1558–1559 |doi=10.1126/science.1137541 |pmid=17158315 |doi-access=free }}</ref><ref name="Discover 2004">{{cite journal |last=Zimmer |first=Carl |authorlink=Carl Zimmer |date=26 June 2004 |title=What Came Before DNA? |url=http://discovermagazine.com/2004/jun/cover |journal=Discover  |url-status=live |archiveurl=https://web.archive.org/web/20140319001351/http://discovermagazine.com/2004/jun/cover |archivedate=19 March 2014}}</ref>
  −
  −
原始细胞是一种自组织、自排序、球形的脂质集合,被提议作为生命起源的踏脚石。进化论中的一个核心问题是简单的原始细胞是如何首先产生的,并对下一代的繁殖贡献不同,推动生命的进化。虽然在实验室环境中还没有实现功能性的原始细胞,但有科学家认为这个目标是可以实现的。
  −
  −
Self-assembled [[Vesicle (biology and chemistry)|vesicles]] are essential components of primitive cells.<ref name="Chen 2010" /> The [[second law of thermodynamics]] requires that the universe move in a direction in which [[entropy]] increases, yet life is distinguished by its great degree of organization. Therefore, a boundary is needed to separate [[Metabolism|life processes]] from non-living matter.<ref name="SciAm 2007">{{cite journal |last=Shapiro |first=Robert |authorlink=Robert Shapiro (chemist) |date=June 2007 |title=A Simpler Origin for Life |url=http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |journal=Scientific American |volume=296 |issue=6 |pages=46–53 |doi=10.1038/scientificamerican0607-46 |pmid=17663224 |accessdate=2015-06-15 |bibcode=2007SciAm.296f..46S |url-status=live |archiveurl=https://web.archive.org/web/20150614000643/http://www.scientificamerican.com/article/a-simpler-origin-for-life/ |archivedate=14 June 2015}}</ref> Researchers Irene Chen and Szostak amongst others, suggest that simple physicochemical properties of elementary protocells can give rise to essential cellular behaviours, including primitive forms of differential reproduction competition and energy storage. Such cooperative interactions between the membrane and its encapsulated contents could greatly simplify the transition from simple replicating molecules to true cells.<ref name="Chen 2006" /> Furthermore, competition for membrane molecules would favour stabilized membranes, suggesting a selective advantage for the evolution of cross-linked fatty acids and even the [[phospholipid]]s of today.<ref name="Chen 2006" /> Such [[micro-encapsulation]] would allow for metabolism within the membrane, the exchange of small molecules but the prevention of passage of large substances across it.<ref>{{harvnb|Chang|2007}}</ref> The main advantages of encapsulation include the increased [[solubility]] of the contained cargo within the capsule and the storage of energy in the form of an [[electrochemical gradient]].
  −
  −
自组装囊泡是原始细胞的必要组成部分。热力学第二定律要求宇宙向熵增加的方向运动,然但生命以其组织程度高而著称。因此,需要一个边界来将生命过程与非生命物质分开。研究人员艾琳·陈 Irene Chen和绍斯塔克 Szostak等人认为,基本原细胞的简单物理化学特性可以引起基本的细胞行为,包括原始形式的差异繁殖竞争和能量储存。膜与包裹物之间的这种合作相互作用可以大大简化从简单复制分子到真正细胞的过渡。此外,对膜分子的竞争将有利于稳定的膜,这表明交联脂肪酸甚至今天的磷脂的进化具有选择性优势。 这种微胶囊将允许膜内的新陈代谢,小分子的交换,但防止大物质穿过膜。胶囊化的主要优势包括胶囊内所含货物的溶解度增加,以及以电化学梯度的形式储存能量。讨论***为什么胶囊内的货物的溶解度会增加呢?***
  −
  −
A 2012 study led by Mulkidjanian of the [[University of Osnabrück]], suggests that inland pools of condensed and cooled geothermal vapor have the ideal characteristics for the origin of life.<ref name="Switek 2012">{{cite news |last=Switek |first=Brian |date=13 February 2012 |title=Debate bubbles over the origin of life |work=Nature |location=London |publisher=Nature Publishing Group |doi=10.1038/nature.2012.10024}}</ref> Scientists confirmed in 2002 that by adding a [[montmorillonite]] clay to a solution of fatty acid micelles (lipid spheres), the clay sped up the rate of vesicles formation 100-fold.<ref name="Discover 2004" /> Furthermore, recent studies have found that the repeated actions of dehydration and rehydration trapped biomolecules like RNA inside the lipid protocells found within hot springs and providing the necessary preconditions for evolution by natural selection.<ref>{{Cite web|last=z3530495|date=2020-05-05|title='When chemistry became biology': looking for the origins of life in hot springs|url=https://newsroom.unsw.edu.au/news/science-tech/when-chemistry-became-biology-looking-origins-life-hot-springs|access-date=2020-10-12|website=UNSW Newsroom}}</ref>
  −
  −
奥斯纳布吕克大学的穆尔基贾尼安 Mulkidjanian领导的一项2012年的研究表明,冷凝和冷却的地热蒸汽的内陆池具有生命起源的理想特征。科学家在2002年证实,通过在脂肪酸胶束(脂质球)溶液中加入蒙脱石粘土,粘土将囊泡形成的速度加快了100倍。此外,最近的研究还发现,脱水和补水的反复作用将RNA等生物分子困在了温泉内发现的脂质原始细胞内,为自然选择的进化提供了必要的前提条件。
  −
  −
=== Lipid vesicles formation in fresh water ===
  −
  −
淡水中脂质泡的形成 
  −
  −
[[Bruce Damer]] and [[David Deamer]] have come to the conclusion that [[cell membrane]]s cannot be formed in salty [[seawater]], and must therefore have originated in freshwater. Before the continents formed, the only dry land on Earth would be volcanic islands, where rainwater would form ponds where lipids could form the first stages towards cell membranes. These predecessors of true cells are assumed to have behaved more like a [[superorganism]] rather than individual structures, where the porous membranes would house molecules which would leak out and enter other protocells. Only when true cells had evolved would they gradually adapt to saltier environments and enter the ocean.<ref>{{cite journal |last1=Damer |first1=Bruce |last2=Deamer |first2=David |date=13 March 2015 |title=Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life |journal=Life |volume=5 |issue=1 |pages=872–887 |doi=10.3390/life5010872 |pmc=4390883 |pmid=25780958}}</ref>
  −
  −
布鲁斯·达默Bruce Damer和大卫·迪默David Deamer得出的结论是,细胞膜不可能在咸咸的海水中形成,因此必须起源于淡水。在大陆形成之前,地球上唯一干燥的陆地应该是火山岛,雨水会在那里形成池塘,脂质可以在那里形成走向细胞膜的第一个阶段。这些真正细胞的前身被认为表现得更像一个超个体,而不是个体的结构,多孔的膜会容纳分子,这些分子会漏出并进入其他原细胞。只有当真细胞进化后,它们才会逐渐适应较咸的环境,进入海洋。
  −
  −
=== Vesicles consisting of mixtures of RNA-like biochemicals ===
  −
  −
由RNA类生化物质的混合物组成的囊泡
  −
Another protocell model is the [[Jeewanu]]. First synthesized in 1963 from simple minerals and basic organics while exposed to sunlight, it is still reported to have some metabolic capabilities, the presence of [[semipermeable membrane]], amino acids, phospholipids, [[carbohydrate]]s and RNA-like molecules.<ref name="Grote 2011">{{cite journal |last=Grote |first=Mathias |date=September 2011 |title=''Jeewanu'', or the 'particles of life' |url=http://www.ias.ac.in/jbiosci/grote_3677.pdf |journal=[[Journal of Biosciences]] |volume=36 |issue=4 |pages=563–570 |doi=10.1007/s12038-011-9087-0 |pmid=21857103 |s2cid=19551399 |accessdate=2015-06-15 |url-status=live |archiveurl=https://web.archive.org/web/20150924050938/http://www.ias.ac.in/jbiosci/grote_3677.pdf |archivedate=24 September 2015}}</ref><ref name="Gupta 2013">{{cite journal |last1=Gupta |first1=V.K. |last2=Rai |first2=R.K. |date=August 2013 |title=Histochemical localisation of RNA-like material in photochemically formed self-sustaining, abiogenic supramolecular assemblies 'Jeewanu' |url=https://www.academia.edu/9439398 |journal=International Research Journal of Science & Engineering |volume=1 |issue=1 |pages=1–4|accessdate=2015-06-15 |url-status=live |archiveurl=https://web.archive.org/web/20170628001930/http://www.academia.edu/9439398/Histochemical_Localisation_of_RNA_like_material_in_photochemically_formed_self-sustaining_abiogenic_supramolecular_assemblis_Jeewanu_ |archivedate=28 June 2017}}</ref> However, the nature and properties of the Jeewanu remains to be clarified.
  −
  −
另一种原细胞模型是Jeewanu。1963年首次由简单的矿物质和基本有机物在阳光下合成,据报道,它仍具有一定的新陈代谢能力,存在半透膜、氨基酸、磷脂、碳水化合物和RNA类分子。
  −
  −
Electrostatic interactions induced by short, positively charged, hydrophobic peptides containing 7 amino acids in length or fewer, can attach RNA to a vesicle membrane, the basic cell membrane.<ref>{{cite news |last=Welter |first=Kira |date=10 August 2015 |title=Peptide glue may have held first protocell components together |url=http://www.rsc.org/chemistryworld/2015/08/peptide-glue-rna-may-have-held-first-protocells-together |work=Chemistry World |type=News |location=London |publisher=Royal Society of Chemistry  |accessdate= 2015-08-29 |url-status=live |archiveurl=https://web.archive.org/web/20150905234238/http://www.rsc.org/chemistryworld/2015/08/peptide-glue-rna-may-have-held-first-protocells-together |archivedate=5 September 2015}}</ref><ref>{{cite journal |last1=Kamat |first1=Neha P. |last2=Tobé |first2=Sylvia |last3=Hill |first3=Ian T. |last4=Szostak |first4=Jack W. |authorlink4=Jack W. Szostak |title=Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides |date=29 July 2015 |journal=Angewandte Chemie International Edition |doi=10.1002/anie.201505742 |pmid=26223820 |pmc=4600236 |volume=54 |issue=40 |pages=11735–11739}}</ref>
  −
  −
由长度为7个氨基酸或更少的带正电荷的疏水性短肽引起的静电相互作用,可以将RNA附着在囊膜上,即基本细胞膜上。
  −
  −
=== Metal-sulfide precipitates ===
     −
金属硫化物沉淀物
     −
William Martin and [[Michael Russell (scientist)|Michael Russell]] have suggested < blockquote >. . . . that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH, and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyze the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments,..."<ref name="Martin2003">{{cite journal |last1=Martin |first1=William |authorlink1=William F. Martin |last2=Russell |first2=Michael J. |date=29 January 2003 |title=On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=Philosophical Transactions of the Royal Society B |volume=358 |issue=1429 |pages=59–83; discussion 83–85 |doi=10.1098/rstb.2002.1183|pmid=12594918 |pmc=1693102}}</ref> < /blockquote >
+
William Martin and [[Michael Russell (scientist)|Michael Russell]] have suggested < blockquote > < /blockquote >
   −
威廉·马丁 William Martin和迈克尔·拉塞尔 Michael Russell说
+
威廉·马丁 William Martin和迈克尔·拉塞尔 Michael Russell说:
 +
<blockquote>
 +
. . . . that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH, and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyze the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments,..."
   −
     ......生命是在一个渗流点热液丘中的结构化一硫化铁沉淀物中演化出来的,其氧化还原、pH值和温度梯度介于富含硫化物的热液和冥古代洋底的含铁(II)水之间。在渗透点金属硫化物沉淀物化石中观察到的自然生成的三维分隔表明,这些无机分隔是在自由生活的原核生物中发现的细胞壁和细胞膜的前身。已知FeS和NiS能够催化一氧化碳和甲基硫化物(热液的成分)合成乙酰-甲基硫化物,这表明前生物合成发生在这些金属硫化物壁隔室的内表面,......"
+
     ......生命是在一个渗流点热液丘中的结构化一硫化铁沉淀物中演化出来的,其氧化还原、pH值和温度梯度介于富含硫化物的热液和冥古代洋底的含铁(II)水之间。在渗透点金属硫化物沉淀物化石中观察到的自然生成的三维分隔表明,这些无机分隔是在自由生活的原核生物中发现的细胞壁和细胞膜的前身。已知FeS和NiS能够催化一氧化碳和甲基硫化物(热液的成分)合成乙酰-甲基硫化物,这表明前生物合成发生在这些金属硫化物壁隔室的内表面,......"<ref name="Martin2003">{{cite journal |last1=Martin |first1=William |authorlink1=William F. Martin |last2=Russell |first2=Michael J. |date=29 January 2003 |title=On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells |journal=Philosophical Transactions of the Royal Society B |volume=358 |issue=1429 |pages=59–83; discussion 83–85 |doi=10.1098/rstb.2002.1183|pmid=12594918 |pmc=1693102}}</ref>
== Pertinent geological environments ==
+
</blockquote>
   −
相关地质环境
  −
===Darwin's little pond===
     −
Darwin的小池塘 
     −
An early concept, that life originated from non-living matter in slow stages, appeared in [[Herbert Spencer]]'s 1864–1867 book ''Principles of Biology''. In 1879 [[William Turner Thiselton-Dyer]] referred to this in a paper "On spontaneous generation and evolution". On 1 February 1871 [[Charles Darwin]] wrote about these publications to [[Joseph Dalton Hooker|Joseph Hooker]], and set out his own speculation,<ref name="Darwin DCP-LETT-7471">{{cite web | title=Letter no. 7471, Charles Darwin to Joseph Dalton Hooker, 1 February (1871) | website=Darwin Correspondence Project | date= | url=https://www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml | access-date=7 July 2020}}</ref><ref>{{cite web|url=https://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp|title=Origin and Evolution of Life on a Frozen Earth|last=Priscu|first=John C.|authorlink=John Charles Priscu|publisher=[[National Science Foundation]]|location=Arlington County, VA|archiveurl=https://web.archive.org/web/20131218070241/http://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp|archivedate=18 December 2013|url-status=live|accessdate=2014-03-01}}</ref> suggesting that the original spark of life may have begun in a < blockquote >warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, {{sic|hide=y|&c.}}, present, that a {{sic|hide=y|[[protein]]e}} compound was chemically formed ready to undergo still more complex changes.< /blockquote > He went on to explain that < blockquote >at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed.< /blockquote >
+
== 相关地质环境==
 +
===Darwin的小池塘 ===
   −
一个早期的概念,即生命在缓慢的阶段中起源于非生命物质,出现在赫伯特·斯宾塞 Herbert Spencer 1864-1867年的《生物学原理》一书中。1879年威廉·特纳·希塞尔顿-代尔 William Turner Thiselton-Dyer在论文"论自然发生和演化"中提到了这一点。1871年2月1日,Charles Darwin将这些出版物写信给约瑟夫·胡克 Joseph Hooker,并提出了自己的推测,认为生命的最初火花可能是始于
+
An early concept, that life originated from non-living matter in slow stages, appeared in [[Herbert Spencer]]'s 1864–1867 book ''''. In 1879 [[William Turner Thiselton-Dyer]] referred to this in a paper "On spontaneous generation and evolution". On 1 February 1871 [[Charles Darwin]] wrote about these publications to [[Joseph Dalton Hooker|Joseph Hooker]], and set out his own speculation,suggesting that the original spark of life may have begun in a < blockquote >< /blockquote > He went on to explain that < blockquote >at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed.< /blockquote >
    +
一个早期的概念,即生命在缓慢的阶段中起源于非生命物质,出现在赫伯特·斯宾塞 Herbert Spencer 1864-1867年的《生物学原理 Principles of Biology》一书中。1879年威廉·特纳·希塞尔顿-代尔 William Turner Thiselton-Dyer在论文"论自然发生和演化"中提到了这一点。1871年2月1日,Charles Darwin将这些出版物写信给约瑟夫·胡克 Joseph Hooker,并提出了自己的推测,<ref name="Darwin DCP-LETT-7471">{{cite web | title=Letter no. 7471, Charles Darwin to Joseph Dalton Hooker, 1 February (1871) | website=Darwin Correspondence Project | date= | url=https://www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml | access-date=7 July 2020}}</ref><ref>{{cite web|url=https://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp|title=Origin and Evolution of Life on a Frozen Earth|last=Priscu|first=John C.|authorlink=John Charles Priscu|publisher=[[National Science Foundation]]|location=Arlington County, VA|archiveurl=https://web.archive.org/web/20131218070241/http://www.nsf.gov/news/special_reports/darwin/textonly/polar_essay1.jsp|archivedate=18 December 2013|url-status=live|accessdate=2014-03-01}}</ref>认为生命的最初火花可能是始于
 +
<blockquote>
 +
    warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, {{sic|hide=y|&c.}}, present, that a {{sic|hide=y|[[protein]]e}} compound was chemically formed ready to undergo still more complex changes.
    
   温暖的小池塘,加上各种氨和磷盐,光、热、电等的存在,一种蛋白质化合物已经在化学上形成,准备进行更复杂的变化。
 
   温暖的小池塘,加上各种氨和磷盐,光、热、电等的存在,一种蛋白质化合物已经在化学上形成,准备进行更复杂的变化。
 +
</blockquote>
    +
他继续解释说,
   −
他继续解释说,
+
<blockquote>
 +
at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed.
   −
< blockquote >
   
在今天,这种物质会被立即吞噬或吸收,而在生物形成之前是不会有这种情况的。
 
在今天,这种物质会被立即吞噬或吸收,而在生物形成之前是不会有这种情况的。
  < blockquote >
+
  </blockquote>
    
{{harvnb|Darwin|1887|p=[http://darwin-online.org.uk/content/frameset?viewtype=text&itemID=F1452.3&pageseq=30 18]}}:
 
{{harvnb|Darwin|1887|p=[http://darwin-online.org.uk/content/frameset?viewtype=text&itemID=F1452.3&pageseq=30 18]}}:
第824行: 第659行:  
Darwin 1887年,第18页。
 
Darwin 1887年,第18页。
    +
<blockquote>
 
It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and oh! what a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, {{sic|&c.|hide=y}}, present, that a {{sic|[[protein]]e|hide=y}} compound was chemically formed ready to undergo still more complex changes, at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed.
 
It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and oh! what a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, {{sic|&c.|hide=y}}, present, that a {{sic|[[protein]]e|hide=y}} compound was chemically formed ready to undergo still more complex changes, at the present day such matter would be instantly devoured or absorbed, which would not have been the case before living creatures were formed.
   第830行: 第666行:  
— Darwin, 1 February 1871
 
— Darwin, 1 February 1871
 
—达尔文,1871年2月1日
 
—达尔文,1871年2月1日
 +
</blockquote>
   −
More recent studies, in 2017, support the notion that life may have begun right after the Earth was formed as RNA molecules emerging from "warm little ponds".<ref name="IND-20171002">{{cite web |last=Johnston |first=Ian |title=Life first emerged in 'warm little ponds' almost as old as the Earth itself – Darwin's famous idea backed by new scientific study |url=https://www.independent.co.uk/news/science/origins-life-ponds-organisms-earth-age-study-a7978906.html |date=2 October 2017 |work=[[The Independent]] |accessdate=2 October 2017 |url-status=live |archiveurl=https://web.archive.org/web/20171003003027/http://www.independent.co.uk/news/science/origins-life-ponds-organisms-earth-age-study-a7978906.html |archivedate=3 October 2017}}</ref>
  −
  −
2017年的最新研究支持这样的观点:生命可能在地球形成后就开始了,因为RNA分子从"温暖的小池塘"中出现。
  −
  −
===Volcanic hot springs and hydrothermal vents, shallow or deep===
  −
  −
浅层或深层的火山温泉和热液喷口
  −
  −
{{for|branching of Bacteria phyla|Bacterial phyla}}
     −
Martin Brazier has shown that early micro-fossils came from a hot world of gases such as [[methane]], [[ammonia]], [[carbon dioxide]] and [[hydrogen sulphide]], which are toxic to much current life.<ref>
+
2017年的最新研究支持这样的观点:生命可能在地球形成后就开始了,因为RNA分子从"温暖的小池塘"中出现。<ref name="IND-20171002">{{cite web |last=Johnston |first=Ian |title=Life first emerged in 'warm little ponds' almost as old as the Earth itself – Darwin's famous idea backed by new scientific study |url=https://www.independent.co.uk/news/science/origins-life-ponds-organisms-earth-age-study-a7978906.html |date=2 October 2017 |work=[[The Independent]] |accessdate=2 October 2017 |url-status=live |archiveurl=https://web.archive.org/web/20171003003027/http://www.independent.co.uk/news/science/origins-life-ponds-organisms-earth-age-study-a7978906.html |archivedate=3 October 2017}}</ref>
   −
M.D> Brasier (2012), "Secret Chambers: The Inside Story of Cells and Complex Life" (Oxford Uni Press), p.298</ref> Another analysis of the conventional threefold tree of life shows thermophilic and hyperthermophilic [[bacteria]] and [[archaea]] are closest to the root, suggesting that life may have evolved in a hot environment.<ref>Ward, Peter & Kirschvink, Joe, op cit, p. 42</ref>
+
===浅层或深层的火山温泉和热液喷口===
   −
马丁·布劳泽尔 Martin Brazier曾表明,早期的微体化石来自于甲烷、氨、二氧化碳和硫化氢等气体的高温世界,这些气体对目前的许多生命都是有毒的。另一种对传统的三重生命树的分析表明,嗜热和嗜高温的细菌和古细菌最接近根部,这表明生命可能是在高温环境中进化的。
+
马丁·布劳泽尔 Martin Brazier曾表明,早期的微体化石来自于甲烷、氨、二氧化碳和硫化氢等气体的高温世界,这些气体对目前的许多生命都是有毒的。<ref>M.D Brasier (2012), "Secret Chambers: The Inside Story of Cells and Complex Life" (Oxford Uni Press), p.298</ref> 另一种对传统的三重生命树的分析表明,嗜热和嗜高温的细菌和古细菌最接近根部,这表明生命可能是在高温环境中进化的。<ref>Ward, Peter & Kirschvink, Joe, op cit, p. 42</ref>
   −
===Deep sea hydrothermal vents===
     −
深海热液喷口
+
===深海热液喷口===
[[File:Blacksmoker in Atlantic Ocean.jpg|thumb|upright|Deep-sea hydrothermal vent or [[black smoker]]]]
+
[[File:Blacksmoker in Atlantic Ocean.jpg|thumb|upright|深海热液喷口或海底黑烟柱]]
 
  −
深海热液喷口或海底黑烟柱
  −
The deep sea vent, or alkaline [[hydrothermal vent]], theory posits that life may have begun at submarine hydrothermal vents,<ref name=":1">{{Cite journal|author1=Colín-García, M.|author2=A. Heredia|author3=G. Cordero|author4=A. Camprubí|author5=A. Negrón-Mendoza|author6=F. Ortega-Gutiérrez|author7=H. Berald|author8=S. Ramos-Bernal|year=2016|title=Hydrothermal vents and prebiotic chemistry: a review|url=http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/309-sitio/articulos/cuarta-epoca/6803/1620-6803-13-colin|journal=Boletín de la Sociedad Geológica Mexicana|volume=68|issue=3|pages=599–620|url-status=live|archiveurl=https://web.archive.org/web/20170818175803/http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/309-sitio/articulos/cuarta-epoca/6803/1620-6803-13-colin|archivedate=18 August 2017|doi=10.18268/BSGM2016v68n3a13|doi-access=free}}</ref><ref name="hydrothermal vents NASA 2014">{{cite web|url=https://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |title=Hydrothermal Vents Could Explain Chemical Precursors to Life |last=Schirber |first=Michael |date=24 June 2014 |website=NASA Astrobiology: Life in the Universe |publisher=NASA |accessdate=2015-06-19 |url-status=dead |archiveurl=https://web.archive.org/web/20141129051724/http://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |archivedate=29 November 2014}}</ref>  Martin and Russell have suggested < blockquote >that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH, and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyze the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments,...<ref name="Martin2003" />< /blockquote > These form where hydrogen-rich fluids emerge from below the sea floor, as a result of [[Serpentinite|serpentinization]] of ultra-[[mafic]] [[olivine]] with seawater and a pH interface with carbon dioxide-rich ocean water. The vents form a sustained chemical energy source derived from redox reactions, in which electron donors (molecular hydrogen) react with electron acceptors (carbon dioxide); see [[Iron–sulfur world theory]]. These are highly [[exothermic reaction]]s.<ref name=":1" />{{efn|The reactions are:<br />
  −
 
  −
深海喷口或碱性热液喷口理论认为生命可能始于海底热液喷口,Martin和Russell认为
  −
 
  −
< blockquote >
     −
生命是在一个渗流点热液丘中的结构化一硫化铁沉淀物中演化出来的,其氧化还原、pH值和温度梯度介于富含硫化物的热液和冥古代洋底的含铁(II)水之间。在渗流点金属硫化物沉淀物化石中观察到的自然生成的三维分隔表明,这些无机分隔是自由生活的原核生物中发现的细胞壁和膜的前体。已知FeS和NiS能够催化一氧化碳和甲基硫化物(热液的成分)合成乙酰-甲基硫化物,这表明前生物合成发生在这些金属硫化物壁隔室的内表面,
+
深海喷口或碱性热液喷口理论认为生命可能始于海底热液喷口,<ref name=":1">{{Cite journal|author1=Colín-García, M.|author2=A. Heredia|author3=G. Cordero|author4=A. Camprubí|author5=A. Negrón-Mendoza|author6=F. Ortega-Gutiérrez|author7=H. Berald|author8=S. Ramos-Bernal|year=2016|title=Hydrothermal vents and prebiotic chemistry: a review|url=http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/309-sitio/articulos/cuarta-epoca/6803/1620-6803-13-colin|journal=Boletín de la Sociedad Geológica Mexicana|volume=68|issue=3|pages=599–620|url-status=live|archiveurl=https://web.archive.org/web/20170818175803/http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/309-sitio/articulos/cuarta-epoca/6803/1620-6803-13-colin|archivedate=18 August 2017|doi=10.18268/BSGM2016v68n3a13|doi-access=free}}</ref><ref name="hydrothermal vents NASA 2014">{{cite web|url=https://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |title=Hydrothermal Vents Could Explain Chemical Precursors to Life |last=Schirber |first=Michael |date=24 June 2014 |website=NASA Astrobiology: Life in the Universe |publisher=NASA |accessdate=2015-06-19 |url-status=dead |archiveurl=https://web.archive.org/web/20141129051724/http://astrobiology.nasa.gov/articles/2014/6/24/hydrothermal-vents-could-explain-chemical-precursors-to-life/ |archivedate=29 November 2014}}</ref>Martin和Russell认为
< blockquote >
     −
这些喷口形成于海底富氢液体渗出的地方,是超镁铁质橄榄石与海水发生蛇纹石化以及与富含二氧化碳的海水的pH值界面的结果。这些喷口形成了一个来自氧化还原反应的持续化学能源,其中电子供体(分子氢)与电子受体(二氧化碳)发生反应;见铁-硫世界理论。这些都是高度放热的反应。
+
<blockquote>
 +
life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH, and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyze the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments,...
   −
Russell demonstrated that alkaline vents created an abiogenic [[Proton electromotive force|proton motive force]] (PMF) [[Chemiosmosis|chemiosmotic]] gradient,<ref name="Martin2003" /> in which conditions are ideal for an abiogenic hatchery for life. Their microscopic compartments "provide a natural means of concentrating organic molecules," composed of iron-sulfur minerals such as [[mackinawite]], endowed these mineral cells with the catalytic properties envisaged by [[Günter Wächtershäuser]].<ref name="Lane 2009" /> This movement of ions across the membrane depends on a combination of two factors:
+
生命是在一个渗流点热液丘中的结构化一硫化铁沉淀物中演化出来的,其氧化还原、pH值和温度梯度介于富含硫化物的热液和冥古代洋底的含铁(II)水之间。在渗流点金属硫化物沉淀物化石中观察到的自然生成的三维分隔表明,这些无机分隔是自由生活的原核生物中发现的细胞壁和膜的前体。已知FeS和NiS能够催化一氧化碳和甲基硫化物(热液的成分)合成乙酰-甲基硫化物,这表明前生物合成发生在这些金属硫化物壁隔室的内表面,...<ref name="Martin2003" />
 +
</blockquote>
   −
Russell证明,碱性喷口创造了一个非生物质子动力(PMF)化学渗透的梯度,其中的条件是理想的非生物生命孵化器。它们的微观隔间"提供了集中有机分子的天然手段",由铁硫矿物组成,如马基诺矿,赋予这些矿物小室以金特·沃特肖泽 Günter Wächtershäuser设想的催化特性。这种离子在膜上的运动取决于两个因素的组合:
+
这些喷口形成于海底富氢液体渗出的地方,是超镁铁质橄榄石与海水发生蛇纹石化以及与富含二氧化碳的海水的pH值界面的结果。这些喷口形成了一个来自氧化还原反应的持续化学能源,其中电子供体(分子氢)与电子受体(二氧化碳)发生反应;见[[铁-硫世界理论]]。这些都是高度放热的反应。<ref name=":1" />{{efn|The reactions are:<br />
   −
# [[Diffusion]] force caused by concentration gradient—all particles including ions tend to diffuse from higher concentration to lower.
     −
由浓度梯度引起的扩散力--包括离子在内的所有粒子都倾向于从高浓度向低浓度扩散。
+
Russell证明,碱性喷口创造了一个非生物质子动力(PMF)化学渗透的梯度,<ref name="Martin2003" /> 其中的条件是理想的非生物生命孵化器。它们的微观隔间"提供了集中有机分子的天然手段",由铁硫矿物组成,如马基诺矿,赋予这些矿物小室以金特·沃特肖泽 Günter Wächtershäuser设想的催化特性。<ref name="Lane 2009" />这种离子在膜上的运动取决于两个因素的组合:
   −
# Electrostatic force caused by electrical potential gradient—[[cations]] like [[proton]]s H<sup>+</sup> tend to diffuse down the electrical potential, [[anions]] in the opposite direction.
+
# 由浓度梯度引起的扩散力--包括离子在内的所有粒子都倾向于从高浓度向低浓度扩散。
   −
电位梯度引起的静电力--质子H<sup>+</sup>等阳离子倾向于顺着电位扩散,阴离子则相反。
+
# 电位梯度引起的静电力--质子H<sup>+</sup>等阳离子倾向于顺着电位扩散,阴离子则相反。
   −
These two gradients taken together can be expressed as an [[electrochemical gradient]], providing energy for abiogenic synthesis. The proton motive force can be described as the measure of the potential energy stored as a combination of proton and voltage gradients across a membrane (differences in proton concentration and electrical potential).
      
这两个梯度综合起来可以表示为电化学梯度,为非生物合成提供能量。质子动力可以描述为质子和电压跨膜梯度的组合(质子浓度和电位的差异)所储存的势能的度量。
 
这两个梯度综合起来可以表示为电化学梯度,为非生物合成提供能量。质子动力可以描述为质子和电压跨膜梯度的组合(质子浓度和电位的差异)所储存的势能的度量。
   −
Szostak suggested that geothermal activity provides greater opportunities for the origination of life in open lakes where there is a buildup of minerals. In 2010, based on spectral analysis of sea and hot mineral water, Ignat Ignatov and Oleg Mosin demonstrated that life may have predominantly originated in hot mineral water. The hot mineral water that contains [[bicarbonate]] and [[calcium]] ions has the most optimal range.<ref>{{cite journal |last1=Ignatov |first1=Ignat |last2=Mosin |first2=Oleg V. |year=2013 |title=Possible Processes for Origin of Life and Living Matter with modeling of Physiological Processes of Bacterium ''Bacillus Subtilis'' in Heavy Water as Model System |journal=Journal of Natural Sciences Research |volume=3 |issue=9 |pages=65–76}}</ref> This case is similar to the origin of life in hydrothermal vents, but with bicarbonate and calcium ions in hot water. This water has a pH of 9–11 and is possible to have the reactions in seawater. According to [[Melvin Calvin]], certain reactions of condensation-dehydration of amino acids and nucleotides in individual blocks of peptides and nucleic acids can take place in the primary hydrosphere with pH 9–11 at a later evolutionary stage.<ref>{{harvnb|Calvin|1969}}</ref> Some of these compounds like [[Hydrogen cyanide|hydrocyanic acid]] (HCN) have been proven in the experiments of Miller. This is the environment in which the [[stromatolite]]s have been created. David Ward of [[Montana State University]] described the formation of stromatolites in hot mineral water at the [[Yellowstone National Park]]. Stromatolites survive in hot mineral water and in proximity to areas with volcanic activity.<ref>{{cite journal |last=Schirber |first=Michael |date=1 March 2010 |title=First Fossil-Makers in Hot Water |url=http://www.astrobio.net/news-exclusive/first-fossil-makers-in-hot-water/ |journal=[[Astrobiology Magazine]] |accessdate=2015-06-19 |url-status=live |archiveurl=https://web.archive.org/web/20150714085640/http://www.astrobio.net/news-exclusive/first-fossil-makers-in-hot-water/ |archivedate=14 July 2015}}</ref> Processes have evolved in the sea near geysers of hot mineral water.
     −
Szostak提出,在有矿物质堆积的开放湖泊中,地热活动为生命的起源提供了更大的机会。2010年,伊格纳特·伊格纳托夫 Ignat Ignatov和奥列格·莫辛Oleg Mosin根据对海水和热矿泉水的光谱分析,证明生命可能主要起源于热矿泉水。含有碳酸氢盐和钙离子的热矿泉水具有最理想的范围。这种情况类似于热液喷口中的生命起源,但热水中含有碳酸氢盐和钙离子。这种水的pH值为9-11,有可能在海水中发生反应。根据梅尔文·卡尔文 Melvin Calvin的观点,在更后的进化阶段,在pH值为9-11的原生水球中,可能发生某些氨基酸和核苷酸在多肽和核酸各个区段中的脱水-缩合反应。其中一些化合物如氢氰酸(HCN)已经在Miller的实验中得到证明。这就是产生叠层石的环境。蒙大拿州立大学的大卫·沃德 David Ward描述了黄石国家公园的热矿泉水中的叠层石的形成。叠层石存在于热矿泉水中和靠近火山活动的地区。这些过程是在热矿泉水的间歇泉附近的海中演化的。***2011年,东京大学的Tadashi Sugawara在热水中创造了一个原生细胞。***缺乏对应英文
+
Szostak提出,在有矿物质堆积的开放湖泊中,地热活动为生命的起源提供了更大的机会。2010年,伊格纳特·伊格纳托夫 Ignat Ignatov和奥列格·莫辛Oleg Mosin根据对海水和热矿泉水的光谱分析,证明生命可能主要起源于热矿泉水。含有碳酸氢盐和钙离子的热矿泉水具有最理想的范围。<ref>{{cite journal |last1=Ignatov |first1=Ignat |last2=Mosin |first2=Oleg V. |year=2013 |title=Possible Processes for Origin of Life and Living Matter with modeling of Physiological Processes of Bacterium ''Bacillus Subtilis'' in Heavy Water as Model System |journal=Journal of Natural Sciences Research |volume=3 |issue=9 |pages=65–76}}</ref>这种情况类似于热液喷口中的生命起源,但热水中含有碳酸氢盐和钙离子。这种水的pH值为9-11,有可能在海水中发生反应。根据梅尔文·卡尔文 Melvin Calvin的观点,在更后的进化阶段,在pH值为9-11的原生水球中,可能发生某些氨基酸和核苷酸在多肽和核酸各个区段中的脱水-缩合反应。<ref>{{harvnb|Calvin|1969}}</ref> 其中一些化合物如氢氰酸(HCN)已经在Miller的实验中得到证明。这就是产生叠层石的环境。蒙大拿州立大学的大卫·沃德 David Ward描述了黄石国家公园的热矿泉水中的叠层石的形成。叠层石存在于热矿泉水中和靠近火山活动的地区。<ref>{{cite journal |last=Schirber |first=Michael |date=1 March 2010 |title=First Fossil-Makers in Hot Water |url=http://www.astrobio.net/news-exclusive/first-fossil-makers-in-hot-water/ |journal=[[Astrobiology Magazine]] |accessdate=2015-06-19 |url-status=live |archiveurl=https://web.archive.org/web/20150714085640/http://www.astrobio.net/news-exclusive/first-fossil-makers-in-hot-water/ |archivedate=14 July 2015}}</ref>这些过程是在热矿泉水的间歇泉附近的海中演化的。2011年,东京大学的Tadashi Sugawara在热水中创造了一个原生细胞。
   −
Experimental research and computer modelling suggest that the surfaces of mineral particles inside hydrothermal vents have catalytic properties similar to those of enzymes and are able to create simple organic molecules, such as [[methanol]] (CH<sub>3</sub>OH) and [[Formic acid|formic]], [[Acetic acid|acetic]] and [[Pyruvic acid|pyruvic]] acid out of the dissolved CO<sub>2</sub> in the water.<ref name="organics">{{cite press release |last=Usher |first=Oli |date=27 April 2015 |title=Chemistry of seabed's hot vents could explain emergence of life |url=https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |publisher=[[University College London]] |accessdate=2015-06-19 |archive-url=https://web.archive.org/web/20150620012231/https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |archive-date=20 June 2015 |url-status=dead}}</ref><ref>{{cite journal |last1=Roldan |first1=Alberto |last2=Hollingsworth |first2=Nathan |last3=Roffey |first3=Anna |last4=Islam |first4=Husn-Ubayda |last5=Goodall |first5=Josephine B. M. |last6=Catlow |first6=C. Richard A. |authorlink6=Richard Catlow |last7=Darr |first7=Jawwad A. |last8=Bras |first8=Wim |last9=Sankar |first9=Gopinathan |last10=Holt |first10=Katherine B. |last11=Hogarth |first11=Graeme |last12=de Leeuw |first12=Nora Henriette |display-authors=4 |date=May 2015 |title=Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions |url=http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f|journal=Chemical Communications |volume=51 |issue=35 |pages=7501–7504 |doi=10.1039/C5CC02078F |pmid=25835242 |accessdate=2015-06-19 |url-status=live |archiveurl=https://web.archive.org/web/20150620003943/http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f |archivedate=20 June 2015|doi-access=free }}</ref>
     −
实验研究和计算机建模表明,热液喷口内的矿物颗粒表面具有类似酶的催化特性,能够从水中溶解的二氧化碳中制造出简单的有机分子,如甲醇(CH<sub>3</sub>OH)和甲酸、乙酸和丙酮酸。
+
实验研究和计算机建模表明,热液喷口内的矿物颗粒表面具有类似酶的催化特性,能够从水中溶解的二氧化碳中制造出简单的有机分子,如甲醇(CH<sub>3</sub>OH)和甲酸、乙酸和丙酮酸。<ref name="organics">{{cite press release |last=Usher |first=Oli |date=27 April 2015 |title=Chemistry of seabed's hot vents could explain emergence of life |url=https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |publisher=[[University College London]] |accessdate=2015-06-19 |archive-url=https://web.archive.org/web/20150620012231/https://www.ucl.ac.uk/silva/mathematical-physical-sciences/maps-news-publication/maps1526 |archive-date=20 June 2015 |url-status=dead}}</ref><ref>{{cite journal |last1=Roldan |first1=Alberto |last2=Hollingsworth |first2=Nathan |last3=Roffey |first3=Anna |last4=Islam |first4=Husn-Ubayda |last5=Goodall |first5=Josephine B. M. |last6=Catlow |first6=C. Richard A. |authorlink6=Richard Catlow |last7=Darr |first7=Jawwad A. |last8=Bras |first8=Wim |last9=Sankar |first9=Gopinathan |last10=Holt |first10=Katherine B. |last11=Hogarth |first11=Graeme |last12=de Leeuw |first12=Nora Henriette |display-authors=4 |date=May 2015 |title=Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions |url=http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f|journal=Chemical Communications |volume=51 |issue=35 |pages=7501–7504 |doi=10.1039/C5CC02078F |pmid=25835242 |accessdate=2015-06-19 |url-status=live |archiveurl=https://web.archive.org/web/20150620003943/http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc02078f |archivedate=20 June 2015|doi-access=free }}</ref>
   −
The research reported above by Martin in 2016 supports the thesis that life arose at hydrothermal vents,<ref>{{cite journal | last1 = Baross | first1 = J.A. | last2 = Hoffman | first2 = S.E. | year = 1985 | title = Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life | journal = Origins LifeEvol. B | volume = 15 | issue = 4 | pages = 327–345 | doi=10.1007/bf01808177| bibcode = 1985OrLi...15..327B | s2cid = 4613918 }}</ref><ref>{{cite journal | last1 = Russell | first1 = M.J. | last2 = Hall | first2 = A.J. | year = 1997 | title = The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front | journal = Journal of the Geological Society| volume = 154 | issue = 3 | pages = 377–402 | doi=10.1144/gsjgs.154.3.0377| pmid = 11541234 | bibcode = 1997JGSoc.154..377R | s2cid = 24792282 }}</ref> that spontaneous chemistry in the Earth's crust driven by rock–water interactions at disequilibrium thermodynamically underpinned life's origin<ref>{{cite journal | last1 = Amend | first1 = J.P. | last2 = LaRowe | first2 = D.E. | last3 = McCollom | first3 = T.M. | last4 = Shock | first4 = E.L. | year = 2013 | title = The energetics of organic synthesis inside and outside the cell | journal = Phil. Trans. R. Soc. Lond. B | volume = 368 | issue = 1622 | page = 20120255 | doi=10.1098/rstb.2012.0255| pmid = 23754809 | pmc = 3685458 }}</ref><ref>{{cite journal | last1 = Shock | first1 = E.L. | last2 = Boyd | first2 = E.S. | year = 2015 | title = Geomicrobiology and microbial geochemistry:principles of geobiochemistry | journal = Elements | volume = 11 | pages = 389–394 | doi = 10.2113/gselements.11.6.395 }}</ref> and that the founding lineages of the archaea and bacteria were H2-dependent autotrophs that used CO2 as their terminal acceptor in energy metabolism.<ref>{{cite journal | last1 = Martin | first1 = W. | last2 = Russell | first2 = M.J. | year = 2007 | title = On the origin of biochemistry at an alkaline hydrothermal vent | journal = Phil. Trans. R. Soc. Lond. B | volume = 362 | issue = 1486 | pages = 1887–1925 | doi = 10.1098/rstb.2006.1881 | pmid = 17255002 | pmc = 2442388 }}</ref> Martin suggests, based upon this evidence that [[LUCA]] "may have depended heavily on the geothermal energy of the vent to survive".<ref>Nature, Vol 535, 28 July 2016. p.468</ref>
     −
Martin在2016年报告的上述研究支持这样的论点,即生命产生于热液喷口,地壳中由岩石-水相互作用驱动的非平衡热力学自发化学作用是生命起源的基础,古细菌和细菌的创始系是依赖H2的自养生物,它们在能量代谢中使用CO2作为终端接受体。Martin根据这些证据提出,LUCA "可能严重依赖喷口的地热能而生存"。
+
Martin在2016年报告的上述研究支持这样的论点,<ref>{{cite journal | last1 = Baross | first1 = J.A. | last2 = Hoffman | first2 = S.E. | year = 1985 | title = Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life | journal = Origins LifeEvol. B | volume = 15 | issue = 4 | pages = 327–345 | doi=10.1007/bf01808177| bibcode = 1985OrLi...15..327B | s2cid = 4613918 }}</ref><ref>{{cite journal | last1 = Russell | first1 = M.J. | last2 = Hall | first2 = A.J. | year = 1997 | title = The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front | journal = Journal of the Geological Society| volume = 154 | issue = 3 | pages = 377–402 | doi=10.1144/gsjgs.154.3.0377| pmid = 11541234 | bibcode = 1997JGSoc.154..377R | s2cid = 24792282 }}</ref>即生命产生于热液喷口,地壳中由岩石-水相互作用驱动的非平衡热力学自发化学作用是生命起源的基础,<ref>{{cite journal | last1 = Amend | first1 = J.P. | last2 = LaRowe | first2 = D.E. | last3 = McCollom | first3 = T.M. | last4 = Shock | first4 = E.L. | year = 2013 | title = The energetics of organic synthesis inside and outside the cell | journal = Phil. Trans. R. Soc. Lond. B | volume = 368 | issue = 1622 | page = 20120255 | doi=10.1098/rstb.2012.0255| pmid = 23754809 | pmc = 3685458 }}</ref><ref>{{cite journal | last1 = Shock | first1 = E.L. | last2 = Boyd | first2 = E.S. | year = 2015 | title = Geomicrobiology and microbial geochemistry:principles of geobiochemistry | journal = Elements | volume = 11 | pages = 389–394 | doi = 10.2113/gselements.11.6.395 }}</ref>古细菌和细菌的创始系是依赖H2的自养生物,它们在能量代谢中使用CO2作为终端接受体。<ref>{{cite journal | last1 = Martin | first1 = W. | last2 = Russell | first2 = M.J. | year = 2007 | title = On the origin of biochemistry at an alkaline hydrothermal vent | journal = Phil. Trans. R. Soc. Lond. B | volume = 362 | issue = 1486 | pages = 1887–1925 | doi = 10.1098/rstb.2006.1881 | pmid = 17255002 | pmc = 2442388 }}</ref>Martin根据这些证据提出,LUCA "可能严重依赖喷口的地热能而生存"。<ref>Nature, Vol 535, 28 July 2016. p.468</ref>
   −
=== Fluctuating hydrothermal pools on volcanic islands or proto-continents ===
+
=== 火山岛或原大陆上的波动性热液池 ===
   −
火山岛或原大陆上的波动性热液池
+
Mulkidjanian和其合著者认为,海洋环境没有提供细胞中普遍存在的离子平衡和组成,也没有提供几乎所有生物体中基本蛋白质和核酶所需的离子,特别是K<sup>+</sup>/Na<sup>+</sup>比率、Mn<sup>2+</sup>、Zn<sup>2+</sup>和磷酸盐浓度。唯一已知的模拟地球上所需条件的环境是在由蒸汽喷口供给的陆地热液池中发现的<ref name=":1" />。此外,这些环境中的矿藏在缺氧大气下会有合适的pH值(而不是目前在含氧大气下的池子),含有能阻挡有害紫外线辐射的硫化物矿物质沉淀物,有湿润/干燥循环,能将基质溶液浓缩到适合自发形成多聚核酸、聚酯<ref>{{cite journal |last1=Chandru |first1=Kuhan |last2=Guttenberg |first2=Nicholas |last3=Giri |first3=Chaitanya |last4=Hongo |first4=Yayoi |last5=Butch |first5=Christopher |last6=Mamajanov |first6=Irena |last7=Cleaves |first7=H. James |title=Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries |journal=Communications Chemistry |date=31 May 2018 |volume=1 |issue=1 |doi=10.1038/s42004-018-0031-1 |doi-access=free }}</ref> 和缩肽<ref>{{cite journal |last1=Forsythe |first1=Jay G |last2=Yu |first2=Sheng-Sheng |last3=Mamajanov |first3=Irena |last4=Grover |first4=Martha A |last5=Krishnamurthy |first5=Ramanarayanan |last6=Fernández |first6=Facundo M |last7=Hud |first7=Nicholas V |title=Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth |journal=Angewandte Chemie (International ed. In English) |date=17 August 2015 |volume=54 |issue=34 |pages=9871–9875 |doi=10.1002/anie.201503792 |pmid=26201989 |pmc=4678426 }}</ref>的浓度,这些都是通过热液环境中的化学反应,以及通过从喷口向相邻池子运输过程中暴露在紫外线下形成的。他们推测的前生物环境与通常推测的深海喷口环境相似,但增加了额外的成分,有助于解释在重建所有生物的最后普遍共同祖先(LUCA)中发现的奇特之处。.<ref>{{cite journal |last1=Mulkidjanian |first1=Armid |last2=Bychkov |first2=Andrew |last3=Dibrova |first3=Daria |last4=Galperin |first4=Michael |last5=Koonin |first5=Eugene |date=3 April 2012 |title=Origin of first cells at terrestrial, anoxic geothermal fields |journal=PNAS |volume=109 |issue=14 |pages=E821–E830 |doi=10.1073/pnas.1117774109 |pmid=22331915 |pmc=3325685|bibcode=2012PNAS..109E.821M }}</ref>
   −
Mulkidjanian and co-authors think that the marine environments did not provide the ionic balance and composition universally found in cells, as well as of ions required by essential proteins and ribozymes found in virtually all living organisms, especially with respect to K<sup>+</sup>/Na<sup>+</sup> ratio, Mn<sup>2+</sup>, Zn<sup>2+</sup> and phosphate concentrations. The only known environments that mimic the needed conditions on Earth are found in terrestrial hydrothermal pools fed by steam vents.<ref name=":1" /> Additionally, mineral deposits in these environments under an anoxic atmosphere would have suitable pH (as opposed to current pools in an oxygenated atmosphere), contain precipitates of sulfide minerals that block harmful UV radiation, have wetting/drying cycles that concentrate substrate solutions to concentrations amenable to spontaneous formation of polymers of nucleic acids, polyesters<ref>{{cite journal |last1=Chandru |first1=Kuhan |last2=Guttenberg |first2=Nicholas |last3=Giri |first3=Chaitanya |last4=Hongo |first4=Yayoi |last5=Butch |first5=Christopher |last6=Mamajanov |first6=Irena |last7=Cleaves |first7=H. James |title=Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries |journal=Communications Chemistry |date=31 May 2018 |volume=1 |issue=1 |doi=10.1038/s42004-018-0031-1 |doi-access=free }}</ref> and depsipeptides,<ref>{{cite journal |last1=Forsythe |first1=Jay G |last2=Yu |first2=Sheng-Sheng |last3=Mamajanov |first3=Irena |last4=Grover |first4=Martha A |last5=Krishnamurthy |first5=Ramanarayanan |last6=Fernández |first6=Facundo M |last7=Hud |first7=Nicholas V |title=Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth |journal=Angewandte Chemie (International ed. In English) |date=17 August 2015 |volume=54 |issue=34 |pages=9871–9875 |doi=10.1002/anie.201503792 |pmid=26201989 |pmc=4678426 }}</ref> both by chemical reactions in the hydrothermal environment, as well as by exposure to [[UV light]] during transport from vents to adjacent pools. Their hypothesized pre-biotic environments are similar to the deep-oceanic vent environments most commonly hypothesized, but add additional components that help explain peculiarities found in reconstructions of the [[Last Universal Common Ancestor]] (LUCA) of all living organisms.<ref>{{cite journal |last1=Mulkidjanian |first1=Armid |last2=Bychkov |first2=Andrew |last3=Dibrova |first3=Daria |last4=Galperin |first4=Michael |last5=Koonin |first5=Eugene |date=3 April 2012 |title=Origin of first cells at terrestrial, anoxic geothermal fields |journal=PNAS |volume=109 |issue=14 |pages=E821–E830 |doi=10.1073/pnas.1117774109 |pmid=22331915 |pmc=3325685|bibcode=2012PNAS..109E.821M }}</ref>
     −
Mulkidjanian和其合著者认为,海洋环境没有提供细胞中普遍存在的离子平衡和组成,也没有提供几乎所有生物体中基本蛋白质和核酶所需的离子,特别是K<sup>+</sup>/Na<sup>+</sup>比率、Mn<sup>2+</sup>、Zn<sup>2+</sup>和磷酸盐浓度。唯一已知的模拟地球上所需条件的环境是在由蒸汽喷口供给的陆地热液池中发现的。此外,这些环境中的矿藏在缺氧大气下会有合适的pH值(而不是目前在含氧大气下的池子),含有能阻挡有害紫外线辐射的硫化物矿物质沉淀物,有湿润/干燥循环,能将基质溶液浓缩到适合自发形成多聚核酸、聚酯和缩肽的浓度,这些都是通过热液环境中的化学反应,以及通过从喷口向相邻池子运输过程中暴露在紫外线下形成的。他们推测的前生物环境与通常推测的深海喷口环境相似,但增加了额外的成分,有助于解释在重建所有生物的最后普遍共同祖先(LUCA)中发现的奇特之处。
+
科林-加西亚 Colín-García“等人”(2016)讨论了热液喷口作为原始环境的优势和劣势。<ref name=":1"/> 他们提到,这种系统中的放能反应可能是促进化学反应的一种自由能来源,此外,它们的矿物学多样性很高,这意味着重要的化学梯度的诱导,从而有利于电子供体和受体之间的相互作用。Colín-García等(2016)还总结了一组被提议用于测试热液喷口在前生物合成中的作用的实验。<ref name=":1"/>
   −
Colín-García ''et al.'' (2016) discuss the advantages and disadvantages of hydrothermal vents as primitive environments.<ref name=":1"/> They mention the exergonic reactions in such systems could have been a source of free energy that promoted chemical reactions, additional to their high mineralogical diversity which implies the induction of important chemical gradients, thus favoring the interaction between electron donors and acceptors. Colín-García ''et al.'' (2016) also summarize a set of experiments proposed to test the role of hydrothermal vents in prebiotic synthesis.<ref name=":1"/>
+
===海洋中的火山灰===
   −
科林-加西亚 Colín-García“等人”(2016)讨论了热液喷口作为原始环境的优势和劣势。他们提到,这种系统中的放能反应可能是促进化学反应的一种自由能来源,此外,它们的矿物学多样性很高,这意味着重要的化学梯度的诱导,从而有利于电子供体和受体之间的相互作用。Colín-García等(2016)还总结了一组被提议用于测试热液喷口在前生物合成中的作用的实验。
+
杰弗里·W.霍夫曼 Geoffrey W.Hoffmann认为,作为生命起源的复杂成核事件涉及多肽和核酸,与地球原始海洋中可用的时间和空间相适应。<ref>{{cite biorxiv|last1=Hoffmann|first1=Geoffrey William|title=A network theory of the origin of life|date=24 December 2016|biorxiv=10.1101/096701}}</ref>Hoffmann认为,火山灰可能提供了假设的复杂成核事件中所需要的许多随机形状。这方面的理论可以通过实验来检验。
   −
===Volcanic ash in the ocean===
     −
海洋中的火山灰
     −
[[Geoffrey W. Hoffmann]] has argued that a complex nucleation event as the origin of life involving both polypeptides and nucleic acid is compatible with the time and space available in the primitive oceans of Earth<ref>{{cite biorxiv|last1=Hoffmann|first1=Geoffrey William|title=A network theory of the origin of life|date=24 December 2016|biorxiv=10.1101/096701}}</ref> Hoffmann suggests that volcanic ash may provide the many random shapes needed in the postulated complex nucleation event. This aspect of the theory can be tested experimentally.
+
=== 戈德的深热生物圈    ===
   −
杰弗里·W.霍夫曼 Geoffrey W.Hoffmann认为,作为生命起源的复杂成核事件涉及多肽和核酸,与地球原始海洋中可用的时间和空间相适应。Hoffmann认为,火山灰可能提供了假设的复杂成核事件中所需要的许多随机形状。这方面的理论可以通过实验来检验。
+
20世纪70年代,托马斯·戈德 Thomas Gold提出了生命最初不是在地球表面,而是在地球表面以下几公里处发展起来的理论。据称,如果在我们的太阳系另一个天体表面以下发现微生物生命,将为这一理论提供重要的凭证。Gold还断言,从深不可测的源头获得涓涓细流的食物是生存所需要的,因为在一滩有机物中产生的生命很可能会消耗掉所有的食物而灭绝。Gold的理论是,这种食物的流动是由于地幔中原始甲烷的逸出所致;对深层微生物(远离沉积碳化合物)的食物供应,更传统的解释是,生物靠水和岩石中(还原的)铁化合物之间的相互作用释放的氢气为生。
   −
=== Gold's deep-hot biosphere ===
     −
戈德的深热生物圈   
     −
In the 1970s, [[Thomas Gold]] proposed the theory that life first developed not on the surface of the Earth, but several kilometers below the surface. It is claimed that the discovery of microbial life below the surface of another body in our Solar System would lend significant credence to this theory. Gold also asserted that a trickle of food from a deep, unreachable, source is needed for survival because life arising in a puddle of organic material is likely to consume all of its food and become extinct. Gold's theory is that the flow of such food is due to out-gassing of primordial methane from the Earth's mantle; more conventional explanations of the food supply of deep microbes (away from sedimentary carbon compounds) is that the organisms [[Microbial metabolism#Hydrogen oxidation|subsist on hydrogen]] released by an interaction between water and (reduced) iron compounds in rocks.
+
=== 放射性海滩假说 ===
   −
20世纪70年代,托马斯·戈德Thomas Gold提出了生命最初不是在地球表面,而是在地球表面以下几公里处发展起来的理论。据称,如果在我们的太阳系另一个天体表面以下发现微生物生命,将为这一理论提供重要的凭证。Gold还断言,从深不可测的源头获得涓涓细流的食物是生存所需要的,因为在一滩有机物中产生的生命很可能会消耗掉所有的食物而灭绝。Gold的理论是,这种食物的流动是由于地幔中原始甲烷的逸出所致;对深层微生物(远离沉积碳化合物)的食物供应,更传统的解释是,生物靠水和岩石中(还原的)铁化合物之间的相互作用释放的氢气为生。
+
扎卡里·亚当 Zachary Adam声称,在月球更接近的时期发生的潮汐过程可能将铀和其他放射性元素的颗粒集中在原始海滩的高水位线上,在那里它们可能负责生成生命的构件。.<ref>{{cite journal |last=Dartnell |first=Lewis |date=12 January 2008 |title=Did life begin on a radioactive beach? |url=https://www.newscientist.com/article/mg19726384.000-did-life-begin-on-a-radioactive-beach.html |journal=New Scientist |issue=2638 |page=8 |accessdate=2015-06-26 |url-status=live |archiveurl=https://web.archive.org/web/20150627101858/http://www.newscientist.com/article/mg19726384.000-did-life-begin-on-a-radioactive-beach.html |archivedate=27 June 2015}}</ref> 根据计算机模型,<ref>{{cite journal |last=Adam |first=Zachary |year=2007 |title=Actinides and Life's Origins |journal=Astrobiology |volume=7 |issue=6 |pages=852–872 |bibcode=2007AsBio...7..852A |doi=10.1089/ast.2006.0066|pmid=18163867}}</ref> 这种放射性物质的沉积可能显示出与加蓬奥克洛铀矿缝中发现的相同的自我维持的核反应。这种放射性海滩沙子可能提供了足够的能量来生成有机分子,如水中的乙腈生成氨基酸和糖类。放射性独居石物质还将可溶性磷酸盐释放到沙粒之间的区域,使其成为生物上的 "可利用物质"。据Adam说,因此氨基酸、糖类和可溶性磷酸盐可能是同时产生的。放射性的锕系元素,在反应中留下了一定的浓度,可能已经形成了有机金属复合物的一部分。这些复合物可能是生命过程的重要早期催化剂。
   −
=== Radioactive beach hypothesis ===
     −
放射性海滩假说
+
约翰·帕内尔 John Parnell认为,在任何早期潮湿的岩石行星的早期阶段,这种过程都可能提供部分 "生命的坩埚",只要该行星足够大,产生了板块构造系统,将放射性矿物带到地表。由于早期地球被认为有许多较小的板块,它可能为这种过程提供了合适的环境。<ref>{{cite journal |last=Parnell |first=John |date=December 2004 |title=Mineral Radioactivity in Sands as a Mechanism for Fixation of Organic Carbon on the Early Earth |journal=Origins of Life and Evolution of Biospheres |volume=34 |issue=6 |pages=533–547 |bibcode=2004OLEB...34..533P |doi=10.1023/B:ORIG.0000043132.23966.a1 |pmid=15570707|citeseerx=10.1.1.456.8955 |s2cid=6067448 }}</ref>
   −
Zachary Adam claims that tidal processes that occurred during a time when the Moon was much closer may have concentrated grains of [[uranium]] and other radioactive elements at the high-water mark on primordial beaches, where they may have been responsible for generating life's building blocks.<ref>{{cite journal |last=Dartnell |first=Lewis |date=12 January 2008 |title=Did life begin on a radioactive beach? |url=https://www.newscientist.com/article/mg19726384.000-did-life-begin-on-a-radioactive-beach.html |journal=New Scientist |issue=2638 |page=8 |accessdate=2015-06-26 |url-status=live |archiveurl=https://web.archive.org/web/20150627101858/http://www.newscientist.com/article/mg19726384.000-did-life-begin-on-a-radioactive-beach.html |archivedate=27 June 2015}}</ref> According to computer models,<ref>{{cite journal |last=Adam |first=Zachary |year=2007 |title=Actinides and Life's Origins |journal=Astrobiology |volume=7 |issue=6 |pages=852–872 |bibcode=2007AsBio...7..852A |doi=10.1089/ast.2006.0066|pmid=18163867}}</ref> a deposit of such radioactive materials could show the same [[Natural nuclear fission reactor|self-sustaining nuclear reaction]] as that found in the [[Oklo]] uranium ore seam in [[Gabon]]. Such radioactive beach sand might have provided sufficient energy to generate organic molecules, such as amino acids and sugars from [[acetonitrile]] in water. Radioactive [[monazite]] material also has released soluble phosphate into the regions between sand-grains, making it biologically "accessible." Thus amino acids, sugars, and soluble phosphates might have been produced simultaneously, according to Adam. Radioactive [[actinide]]s, left behind in some concentration by the reaction, might have formed part of [[Organometallic chemistry|organometallic complexes]]. These complexes could have been important early catalysts to living processes.
     −
扎卡里·亚当 Zachary Adam声称,在月球更接近的时期发生的潮汐过程可能将铀和其他放射性元素的颗粒集中在原始海滩的高水位线上,在那里它们可能负责生成生命的构件。根据计算机模型,这种放射性物质的沉积可能显示出与加蓬奥克洛铀矿缝中发现的相同的自我维持的核反应。这种放射性海滩沙子可能提供了足够的能量来生成有机分子,如水中的乙腈生成氨基酸和糖类。放射性独居石物质还将可溶性磷酸盐释放到沙粒之间的区域,使其成为生物上的 "可利用物质"。据Adam说,因此氨基酸、糖类和可溶性磷酸盐可能是同时产生的。放射性的锕系元素,在反应中留下了一定的浓度,可能已经形成了有机金属复合物的一部分。这些复合物可能是生命过程的重要早期催化剂。
+
== 代谢起源:生理学==
   −
John Parnell has suggested that such a process could provide part of the "crucible of life" in the early stages of any early wet rocky planet, so long as the planet is large enough to have generated a system of plate tectonics which brings radioactive minerals to the surface. As the early Earth is thought to have had many smaller plates, it might have provided a suitable environment for such processes.<ref>{{cite journal |last=Parnell |first=John |date=December 2004 |title=Mineral Radioactivity in Sands as a Mechanism for Fixation of Organic Carbon on the Early Earth |journal=Origins of Life and Evolution of Biospheres |volume=34 |issue=6 |pages=533–547 |bibcode=2004OLEB...34..533P |doi=10.1023/B:ORIG.0000043132.23966.a1 |pmid=15570707|citeseerx=10.1.1.456.8955 |s2cid=6067448 }}</ref>
+
在早期的地球历史中,具有不同起源过程的不同生命形式可能准同时出现。<ref>{{cite journal |last=Davies |first=Paul |authorlink=Paul Davies |date=December 2007 |title=Are Aliens Among Us? |url=http://www.zo.utexas.edu/courses/kalthoff/bio301c/readings/07Davies.pdf |journal=Scientific American |volume=297 |issue=6 |pages=62–69 |doi=10.1038/scientificamerican1207-62 |accessdate=2015-07-16 |quote=...if life does emerge readily under terrestrial conditions, then perhaps it formed many times on our home planet. To pursue this possibility, deserts, lakes and other extreme or isolated environments have been searched for evidence of "alien" life-forms—organisms that would differ fundamentally from known organisms because they arose independently. |bibcode=2007SciAm.297f..62D |url-status=live |archiveurl=https://web.archive.org/web/20160304185832/http://www.zo.utexas.edu/courses/kalthoff/bio301c/readings/07Davies.pdf |archivedate=4 March 2016}}</ref>其他形式可能已经灭绝(通过其不同的生物化学--如假设的生物化学类型--留下了独特的化石)。有人提出:
   −
约翰·帕内尔 John Parnell认为,在任何早期潮湿的岩石行星的早期阶段,这种过程都可能提供部分 "生命的坩埚",只要该行星足够大,产生了板块构造系统,将放射性矿物带到地表。由于早期地球被认为有许多较小的板块,它可能为这种过程提供了合适的环境。
+
<blockquote>
 +
The first organisms were self-replicating iron-rich clays which fixed carbon dioxide into oxalic and other [[dicarboxylic acid]]s. This system of replicating clays and their metabolic phenotype then evolved into the sulfide rich region of the hotspring acquiring the ability to fix nitrogen. Finally phosphate was incorporated into the evolving system which allowed the synthesis of nucleotides and phospholipids. If biosynthesis recapitulates biopoiesis, then the synthesis of amino acids preceded the synthesis of the purine and pyrimidine bases. Furthermore, the polymerization of the amino acid thioesters into polypeptides preceded the directed polymerization of amino acid esters by polynucleotides.
   −
== Origin of metabolism: physiology ==
+
最早的生物是自我复制的富铁粘土,它将二氧化碳固定成草酸和其他二羧酸。这种复制粘土及其新陈代谢表型的系统随后进化到富含硫化物的热泉区获得了固氮的能力。最后磷酸盐被纳入进化的系统,使核苷酸和磷脂的合成成为可能。如果说生物合成概括了生物创建,那么氨基酸的合成就先于嘌呤和嘧啶碱基的合成。此外,氨基酸硫酯聚合成多肽,先于多核苷酸定向聚合氨基酸酯。<ref>{{cite journal |last=Hartman |first=Hyman |date=1998 |title=Photosynthesis and the Origin of Life |journal=Origins of Life and Evolution of Biospheres |volume=28 |issue=4–6 |pages=515–521 |bibcode=1998OLEB...28..515H |doi=10.1023/A:1006548904157 |pmid=11536891|s2cid=2464 }}</ref>
 +
</blockquote>
   −
代谢起源:生理学
  −
Different forms of life with variable origin processes may have appeared quasi-simultaneously in the early [[history of Earth]].<ref>{{cite journal |last=Davies |first=Paul |authorlink=Paul Davies |date=December 2007 |title=Are Aliens Among Us? |url=http://www.zo.utexas.edu/courses/kalthoff/bio301c/readings/07Davies.pdf |journal=Scientific American |volume=297 |issue=6 |pages=62–69 |doi=10.1038/scientificamerican1207-62 |accessdate=2015-07-16 |quote=...if life does emerge readily under terrestrial conditions, then perhaps it formed many times on our home planet. To pursue this possibility, deserts, lakes and other extreme or isolated environments have been searched for evidence of "alien" life-forms—organisms that would differ fundamentally from known organisms because they arose independently. |bibcode=2007SciAm.297f..62D |url-status=live |archiveurl=https://web.archive.org/web/20160304185832/http://www.zo.utexas.edu/courses/kalthoff/bio301c/readings/07Davies.pdf |archivedate=4 March 2016}}</ref> The other forms may be extinct (having left distinctive fossils through their different biochemistry—e.g., [[hypothetical types of biochemistry]]). It has been proposed that:
  −
  −
在早期的地球历史中,具有不同起源过程的不同生命形式可能准同时出现。其他形式可能已经灭绝(通过其不同的生物化学--如假设的生物化学类型--留下了独特的化石)。有人提出:
  −
  −
< blockquote >The first organisms were self-replicating iron-rich clays which fixed carbon dioxide into oxalic and other [[dicarboxylic acid]]s. This system of replicating clays and their metabolic phenotype then evolved into the sulfide rich region of the hotspring acquiring the ability to fix nitrogen. Finally phosphate was incorporated into the evolving system which allowed the synthesis of nucleotides and phospholipids. If biosynthesis recapitulates biopoiesis, then the synthesis of amino acids preceded the synthesis of the purine and pyrimidine bases. Furthermore, the polymerization of the amino acid thioesters into polypeptides preceded the directed polymerization of amino acid esters by polynucleotides.<ref>{{cite journal |last=Hartman |first=Hyman |date=1998 |title=Photosynthesis and the Origin of Life |journal=Origins of Life and Evolution of Biospheres |volume=28 |issue=4–6 |pages=515–521 |bibcode=1998OLEB...28..515H |doi=10.1023/A:1006548904157 |pmid=11536891|s2cid=2464 }}</ref>< /blockquote >
  −
  −
< blockquote >
  −
最早的生物是自我复制的富铁粘土,它将二氧化碳固定成草酸和其他二羧酸。这种复制粘土及其新陈代谢表型的系统随后进化到富含硫化物的热泉区获得了固氮的能力。最后磷酸盐被纳入进化的系统,使核苷酸和磷脂的合成成为可能。如果说生物合成概括了生物创建,那么氨基酸的合成就先于嘌呤和嘧啶碱基的合成。此外,氨基酸硫酯聚合成多肽,先于多核苷酸定向聚合氨基酸酯。
     −
Metabolism-like reactions could have occurred naturally in early oceans, before the first organisms evolved.<ref name="Ralser 2014" /><ref name="Metabolism 2014">{{cite press release |last=Senthilingam |first=Meera |date=25 April 2014 |title=Metabolism May Have Started in Early Oceans Before the Origin of Life |url=http://www.eurekalert.org/pub_releases/2014-04/wt-mmh042314.php |publisher=[[Wellcome Trust]] |agency=[[American Association for the Advancement of Science|EurekAlert!]] |accessdate=2015-06-16 |url-status=live |archiveurl=https://web.archive.org/web/20150617102656/http://www.eurekalert.org/pub_releases/2014-04/wt-mmh042314.php |archivedate=17 June 2015}}</ref> Metabolism may predate the origin of life, which may have evolved from the chemical conditions in the earliest oceans. Reconstructions in laboratories show that some of these reactions can produce RNA, and some others resemble two essential reaction cascades of metabolism: [[glycolysis]] and the [[pentose phosphate pathway]], that provide essential precursors for nucleic acids, amino acids and lipids.<ref name="Metabolism 2014" />
+
类似新陈代谢的反应可能在早期海洋中自然发生,在第一批生物进化之前。<ref name="Ralser 2014" /><ref name="Metabolism 2014">{{cite press release |last=Senthilingam |first=Meera |date=25 April 2014 |title=Metabolism May Have Started in Early Oceans Before the Origin of Life |url=http://www.eurekalert.org/pub_releases/2014-04/wt-mmh042314.php |publisher=[[Wellcome Trust]] |agency=[[American Association for the Advancement of Science|EurekAlert!]] |accessdate=2015-06-16 |url-status=live |archiveurl=https://web.archive.org/web/20150617102656/http://www.eurekalert.org/pub_releases/2014-04/wt-mmh042314.php |archivedate=17 June 2015}}</ref>新陈代谢可能早于生命的起源,它可能是由最早的海洋中的化学条件演化而来的。实验室中的重建表明,其中一些反应可以产生RNA,另外一些反应类似于新陈代谢的两个基本反应级联:糖酵解和磷酸戊糖通路,它们为核酸、氨基酸和脂类提供了必要的前体。<ref name="Metabolism 2014" />
   −
类似新陈代谢的反应可能在早期海洋中自然发生,在第一批生物进化之前。新陈代谢可能早于生命的起源,它可能是由最早的海洋中的化学条件演化而来的。实验室中的重建表明,其中一些反应可以产生RNA,另外一些反应类似于新陈代谢的两个基本反应级联:糖酵解和磷酸戊糖通路,它们为核酸、氨基酸和脂类提供了必要的前体。
     −
=== Clay hypothesis ===
     −
粘土假说
+
=== 粘土假说 ===
   −
[[Montmorillonite]], an abundant [[clay]], is a catalyst for the polymerization of RNA and for the formation of membranes from lipids.<ref>{{cite press release |last=Perry |first=Caroline |date=7 February 2011 |title=Clay-armored bubbles may have formed first protocells |url=http://www.eurekalert.org/pub_releases/2011-02/hu-cbm020411.php |location=Cambridge, MA |publisher=[[Harvard University]] |agency=EurekAlert! |accessdate=2015-06-20 |url-status=live |archiveurl=https://web.archive.org/web/20150714101638/http://www.eurekalert.org/pub_releases/2011-02/hu-cbm020411.php |archivedate=14 July 2015}}</ref> A model for the origin of life using clay was forwarded by Alexander Cairns-Smith in 1985 and explored as a plausible mechanism by several scientists.<ref>{{harvnb|Dawkins|1996|pp=148–161}}</ref> The clay hypothesis postulates that complex organic molecules arose gradually on pre-existing, non-organic replication surfaces of silicate crystals in solution.
+
蒙脱石是一种丰富的粘土,是RNA聚合和脂质形成膜的催化剂。<ref>{{cite press release |last=Perry |first=Caroline |date=7 February 2011 |title=Clay-armored bubbles may have formed first protocells |url=http://www.eurekalert.org/pub_releases/2011-02/hu-cbm020411.php |location=Cambridge, MA |publisher=[[Harvard University]] |agency=EurekAlert! |accessdate=2015-06-20 |url-status=live |archiveurl=https://web.archive.org/web/20150714101638/http://www.eurekalert.org/pub_releases/2011-02/hu-cbm020411.php |archivedate=14 July 2015}}</ref>1985年,亚历山大·凯恩斯-史密斯 Alexander Cairns-Smith提出了一个利用粘土进行生命起源的模型,并被一些科学家作为一种似可信的机制进行了探索。<ref>{{harvnb|Dawkins|1996|pp=148–161}}</ref> 粘土假说假定复杂的有机分子是在溶液中的硅酸盐晶体预先存在的非有机重复表面上逐渐产生的。
   −
蒙脱石是一种丰富的粘土,是RNA聚合和脂质形成膜的催化剂。1985年,亚历山大·凯恩斯-史密斯 Alexander Cairns-Smith提出了一个利用粘土进行生命起源的模型,并被一些科学家作为一种似可信的机制进行了探索。粘土假说假定复杂的有机分子是在溶液中的硅酸盐晶体预先存在的非有机重复表面上逐渐产生的。
     −
At the [[Rensselaer Polytechnic Institute]], James Ferris' studies have also confirmed that montmorillonite clay minerals catalyze the formation of RNA in aqueous solution, by joining nucleotides to form longer chains.<ref>{{cite journal |author1=Wenhua Huang |last2=Ferris |first2=James P. |date=12 July 2006 |title=One-Step, Regioselective Synthesis of up to 50-mers of RNA Oligomers by Montmorillonite Catalysis |journal=Journal of the American Chemical Society |volume=128 |issue=27 |pages=8914–8919 |doi=10.1021/ja061782k |pmid=16819887}}</ref>
+
在伦斯勒理工学院,詹姆斯·费里斯 James Ferris的研究也证实,蒙脱石粘土矿物在水溶液中催化RNA的形成,通过连接核苷酸形成较长的链。<ref>{{cite journal |author1=Wenhua Huang |last2=Ferris |first2=James P. |date=12 July 2006 |title=One-Step, Regioselective Synthesis of up to 50-mers of RNA Oligomers by Montmorillonite Catalysis |journal=Journal of the American Chemical Society |volume=128 |issue=27 |pages=8914–8919 |doi=10.1021/ja061782k |pmid=16819887}}</ref>
   −
在伦斯勒理工学院,詹姆斯·费里斯 James Ferris的研究也证实,蒙脱石粘土矿物在水溶液中催化RNA的形成,通过连接核苷酸形成较长的链。
     −
In 2007, Bart Kahr from the [[University of Washington]] and colleagues reported their experiments that tested the idea that crystals can act as a source of transferable information, using crystals of [[potassium hydrogen phthalate]]. "Mother" crystals with imperfections were cleaved and used as seeds to grow "daughter" crystals from solution. They then examined the distribution of imperfections in the new crystals and found that the imperfections in the mother crystals were reproduced in the daughters, but the daughter crystals also had many additional imperfections. For gene-like behavior to be observed, the quantity of inheritance of these imperfections should have exceeded that of the mutations in the successive generations, but it did not. Thus Kahr concluded that the crystals "were not faithful enough to store and transfer information from one generation to the next."<ref>{{cite journal |last=Moore |first=Caroline |date=16 July 2007 |title=Crystals as genes? |url=http://www.rsc.org/Publishing/ChemScience/Volume/2007/08/Crystals_as_genes.asp |journal=Highlights in Chemical Science |accessdate=2015-06-21 |url-status=live |archiveurl=https://web.archive.org/web/20150714094855/http://www.rsc.org/Publishing/ChemScience/Volume/2007/08/Crystals_as_genes.asp |archivedate=14 July 2015}}
+
2007年,来自华盛顿大学的巴特·卡尔Bart Kahr 及其同事报告了他们的实验,利用邻苯二甲酸氢钾的晶体,检验了晶体可以作为可转移信息的来源的想法。有缺陷的""晶体被切割用作种子以从溶液中生长出""晶体。然后,他们检查了新晶体中缺陷的分布,发现母晶体中的缺陷在子晶体中重现,但子晶体也有许多额外的缺陷。要想观察到类似基因的行为,这些缺陷的遗传的量应该超过连续几代中的突变的量,但事实并非如此。因此Kahr 得出结论,这些晶体 "不够忠实,无法存储信息并将信息从一代传给下一代”。<ref>{{cite journal |last=Moore |first=Caroline |date=16 July 2007 |title=Crystals as genes? |url=http://www.rsc.org/Publishing/ChemScience/Volume/2007/08/Crystals_as_genes.asp |journal=Highlights in Chemical Science |accessdate=2015-06-21 |url-status=live |archiveurl=https://web.archive.org/web/20150714094855/http://www.rsc.org/Publishing/ChemScience/Volume/2007/08/Crystals_as_genes.asp |archivedate=14 July 2015}}
 
* {{cite journal |last1=Bullard |first1=Theresa |last2=Freudenthal |first2=John |last3=Avagyan |first3=Serine |last4=Kahr |first4=Bart |display-authors=3 |year=2007 |title=Test of Cairns-Smith's 'crystals-as-genes' hypothesis |journal=[[Faraday Discussions]] |volume=136 |pages=231–245 |bibcode=2007FaDi..136..231B |doi=10.1039/b616612c |pmid=17955812 }}</ref>
 
* {{cite journal |last1=Bullard |first1=Theresa |last2=Freudenthal |first2=John |last3=Avagyan |first3=Serine |last4=Kahr |first4=Bart |display-authors=3 |year=2007 |title=Test of Cairns-Smith's 'crystals-as-genes' hypothesis |journal=[[Faraday Discussions]] |volume=136 |pages=231–245 |bibcode=2007FaDi..136..231B |doi=10.1039/b616612c |pmid=17955812 }}</ref>
  −
2007年,来自华盛顿大学的巴特·卡尔Bart Kahr 及其同事报告了他们的实验,利用邻苯二甲酸氢钾的晶体,检验了晶体可以作为可转移信息的来源的想法。有缺陷的"母"晶体被切割用作种子以从溶液中生长出"子"晶体。然后,他们检查了新晶体中缺陷的分布,发现母晶体中的缺陷在子晶体中重现,但子晶体也有许多额外的缺陷。要想观察到类似基因的行为,这些缺陷的遗传的量应该超过连续几代中的突变的量,但事实并非如此。因此Kahr 得出结论,这些晶体 "不够忠实,无法存储信息并将信息从一代传给下一代”。
           −
=== Iron–sulfur world ===
+
=== 铁-硫世界===
铁硫世界
  −
{{Main|Iron–sulfur world theory}}
     −
In the 1980s, Günter Wächtershäuser, encouraged and supported by [[Karl R. Popper|Karl Popper]],<ref>{{cite journal |last=Yue-Ching Ho |first=Eugene |date=July–September 1990 |title=Evolutionary Epistemology and Sir Karl Popper's Latest Intellectual Interest: A First-Hand Report |url=http://www.tkpw.net/hk-ies/n15/ |journal=Intellectus |volume=15 |pages=1–3 |oclc=26878740 |accessdate=2012-08-13 |url-status=live |archiveurl=https://web.archive.org/web/20120311074143/http://www.tkpw.net/hk-ies/n15/ |archivedate=11 March 2012}}</ref><ref>{{cite news |last=Wade |first=Nicholas |date=22 April 1997 |title=Amateur Shakes Up Ideas on Recipe for Life |url=https://www.nytimes.com/1997/04/22/science/amateur-shakes-up-ideas-on-recipe-for-life.html?src=pm&pagewanted=2&pagewanted=all |newspaper=The New York Times |location=New York  |accessdate=2015-06-16 |url-status=live |archiveurl=https://web.archive.org/web/20150617122450/http://www.nytimes.com/1997/04/22/science/amateur-shakes-up-ideas-on-recipe-for-life.html?src=pm&pagewanted=2&pagewanted=all |archivedate=17 June 2015}}</ref><ref>{{cite journal |last=Popper |first=Karl R. |authorlink=Karl Popper |date=29 March 1990 |title=Pyrite and the origin of life |journal=Nature |volume=344 |issue=6265 |page=387 |bibcode=1990Natur.344..387P |doi=10.1038/344387a0 |s2cid=4322774 }}</ref> postulated his iron–sulfur world, a theory of the evolution of pre-biotic chemical pathways as the starting point in the evolution of life. It systematically traces today's biochemistry to primordial reactions which provide alternative pathways to the synthesis of organic building blocks from simple gaseous compounds.
+
20世纪80年代,Günter Wächtershäuser在卡尔·波普尔 Karl Popper<ref>{{cite journal |last=Yue-Ching Ho |first=Eugene |date=July–September 1990 |title=Evolutionary Epistemology and Sir Karl Popper's Latest Intellectual Interest: A First-Hand Report |url=http://www.tkpw.net/hk-ies/n15/ |journal=Intellectus |volume=15 |pages=1–3 |oclc=26878740 |accessdate=2012-08-13 |url-status=live |archiveurl=https://web.archive.org/web/20120311074143/http://www.tkpw.net/hk-ies/n15/ |archivedate=11 March 2012}}</ref><ref>{{cite news |last=Wade |first=Nicholas |date=22 April 1997 |title=Amateur Shakes Up Ideas on Recipe for Life |url=https://www.nytimes.com/1997/04/22/science/amateur-shakes-up-ideas-on-recipe-for-life.html?src=pm&pagewanted=2&pagewanted=all |newspaper=The New York Times |location=New York  |accessdate=2015-06-16 |url-status=live |archiveurl=https://web.archive.org/web/20150617122450/http://www.nytimes.com/1997/04/22/science/amateur-shakes-up-ideas-on-recipe-for-life.html?src=pm&pagewanted=2&pagewanted=all |archivedate=17 June 2015}}</ref><ref>{{cite journal |last=Popper |first=Karl R. |authorlink=Karl Popper |date=29 March 1990 |title=Pyrite and the origin of life |journal=Nature |volume=344 |issue=6265 |page=387 |bibcode=1990Natur.344..387P |doi=10.1038/344387a0 |s2cid=4322774 }}</ref> 的鼓励和支持下,提出了他的铁-硫世界,这是一个关于前生物化学途径进化的理论,是生命进化的起点。它系统地将今天的生物化学追溯到原始反应,原始反应提供了从简单的气体化合物合成有机构件的替代途径。
   −
20世纪80年代,Günter Wächtershäuser在卡尔·波普尔 Karl Popper的鼓励和支持下,提出了他的铁-硫世界,这是一个关于前生物化学途径进化的理论,是生命进化的起点。它系统地将今天的生物化学追溯到原始反应,原始反应提供了从简单的气体化合物合成有机构件的替代途径。
      +
与经典的Miller实验依赖外部能量来源(模拟闪电、紫外线照射)不同," Wächtershäuser系统 "自带内置能量来源:铁的硫化物(黄铁矿)和其他矿物。这些金属硫化物的氧化还原反应所释放的能量可用于有机分子的合成,这种系统可能已经演化成自催化组,构成自我复制、代谢活跃的实体,早于今天已知的生命形式。<ref name="Ralser 2014" /><ref name="Metabolism 2014" />在100℃的水环境中用这种硫化物进行实验,产生了产量相对较小的二肽 (0.4%~12.4%)和更小产量的三肽 (0.10%),尽管在相同的条件下,二肽很快被分解。<ref>{{cite journal |last1=Huber |first1=Claudia |last2=Wächtershäuser |first2=Günter |authorlink2=Günter Wächtershäuser |date=31 July 1998 |title=Peptides by Activation of Amino Acids with CO on (Ni,Fe)S Surfaces: Implications for the Origin of Life |journal=Science |volume=281 |issue=5377 |pages=670–672 |bibcode=1998Sci...281..670H |doi=10.1126/science.281.5377.670 |pmid=9685253}}</ref>
   −
In contrast to the classical Miller experiments, which depend on external sources of energy (simulated lightning, ultraviolet [[irradiation]]), "Wächtershäuser systems" come with a built-in source of energy: [[sulfide]]s of iron (iron [[pyrite]]) and other minerals. The energy released from [[redox]] reactions of these metal sulfides is available for the synthesis of organic molecules, and such systems may have evolved into autocatalytic sets constituting self-replicating, metabolically active entities predating the life forms known today.<ref name="Ralser 2014" /><ref name="Metabolism 2014" /> Experiments with such sulfides in an aqueous environment at 100&nbsp;°C produced a relatively small yield of [[dipeptide]]s (0.4% to 12.4%) and a smaller yield of [[tripeptide]]s (0.10%) although under the same conditions, dipeptides were quickly broken down.<ref>{{cite journal |last1=Huber |first1=Claudia |last2=Wächtershäuser |first2=Günter |authorlink2=Günter Wächtershäuser |date=31 July 1998 |title=Peptides by Activation of Amino Acids with CO on (Ni,Fe)S Surfaces: Implications for the Origin of Life |journal=Science |volume=281 |issue=5377 |pages=670–672 |bibcode=1998Sci...281..670H |doi=10.1126/science.281.5377.670 |pmid=9685253}}</ref>
     −
与经典的Miller实验依赖外部能量来源(模拟闪电、紫外线照射)不同," Wächtershäuser系统 "自带内置能量来源:铁的硫化物(黄铁矿)和其他矿物。这些金属硫化物的氧化还原反应所释放的能量可用于有机分子的合成,这种系统可能已经演化成自催化组,构成自我复制、代谢活跃的实体,早于今天已知的生命形式。在100℃的水环境中用这种硫化物进行实验,产生了产量相对较小的二肽 (0.4%~12.4%)和更小产量的三肽 (0.10%),尽管在相同的条件下,二肽很快被分解。
+
Several models reject the self-replication of a "naked-gene", postulating instead the emergence of a primitive metabolism providing a safe environment for the later emergence of RNA replication. The centrality of the [[Citric acid cycle|Krebs cycle]] (citric acid cycle) to energy production in aerobic organisms, and in drawing in carbon dioxide and hydrogen ions in biosynthesis of complex organic chemicals, suggests that it was one of the first parts of the metabolism to evolve. Concordantly, [[Geochemistry|geochemist]] Russell has proposed that "the purpose of life is to hydrogenate carbon dioxide" (as part of a "metabolism-first," rather than a "genetics-first," scenario).  [[Physicist]] [[Jeremy England]] has proposed that life was inevitable from general thermodynamic considerations:< /blockquote >
 
  −
 
  −
Several models reject the self-replication of a "naked-gene", postulating instead the emergence of a primitive metabolism providing a safe environment for the later emergence of RNA replication. The centrality of the [[Citric acid cycle|Krebs cycle]] (citric acid cycle) to energy production in aerobic organisms, and in drawing in carbon dioxide and hydrogen ions in biosynthesis of complex organic chemicals, suggests that it was one of the first parts of the metabolism to evolve.<ref name="Lane 2009">{{harvnb|Lane|2009}}</ref> Concordantly, [[Geochemistry|geochemist]] Russell has proposed that "the purpose of life is to hydrogenate carbon dioxide" (as part of a "metabolism-first," rather than a "genetics-first," scenario). <ref name="Musser">{{cite web |url=http://blogs.scientificamerican.com/observations/how-life-arose-on-earth-and-how-a-singularity-might-bring-it-down/ |title=How Life Arose on Earth, and How a Singularity Might Bring It Down |last=Musser |first=George |authorlink=George Musser |date=23 September 2011 |work=Observations |type=Blog |accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150617211804/http://blogs.scientificamerican.com/observations/how-life-arose-on-earth-and-how-a-singularity-might-bring-it-down/ |archivedate=17 June 2015}}</ref><ref name="Carroll">{{cite web |url=http://blogs.discovermagazine.com/cosmicvariance/2010/03/10/free-energy-and-the-meaning-of-life/ |title=Free Energy and the Meaning of Life |last=Carroll |first=Sean |authorlink=Sean M. Carroll |date=10 March 2010 |work=Cosmic Variance |type=Blog |publisher=Discover|accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150714074327/http://blogs.discovermagazine.com/cosmicvariance/2010/03/10/free-energy-and-the-meaning-of-life/ |archivedate=14 July 2015}}</ref> [[Physicist]] [[Jeremy England]] has proposed that life was inevitable from general thermodynamic considerations: < blockquote >... when a group of atoms is driven by an external source of energy (like the sun or chemical fuel) and surrounded by a heat bath (like the ocean or atmosphere), it will often gradually restructure itself in order to dissipate increasingly more energy. This could mean that under certain conditions, matter inexorably acquires the key physical attribute associated with life.<ref>{{cite journal |last=Wolchover |first=Natalie |date=22 January 2014 |title=A New Physics Theory of Life |url=https://www.quantamagazine.org/20140122-a-new-physics-theory-of-life/ |journal=Quanta Magazine |accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150613052830/https://www.quantamagazine.org/20140122-a-new-physics-theory-of-life/ |archivedate=13 June 2015}}</ref><ref>{{cite journal |last=England |first=Jeremy L. |authorlink=Jeremy England |date=28 September 2013 |title=Statistical physics of self-replication |url=http://www.englandlab.com/uploads/7/8/0/3/7803054/2013jcpsrep.pdf |journal=[[Journal of Chemical Physics]] |volume=139 |issue=12 |page=121923 |arxiv=1209.1179 |bibcode=2013JChPh.139l1923E |doi=10.1063/1.4818538 |pmid=24089735  |accessdate=2015-06-18 |url-status=live |archiveurl=https://web.archive.org/web/20150604131515/http://www.englandlab.com/uploads/7/8/0/3/7803054/2013jcpsrep.pdf |archivedate=4 June 2015|hdl=1721.1/90392 |s2cid=478964 }}</ref>< /blockquote >
  −
 
  −
有几个模型否定了"裸基因"的自我复制,而是假设出现了一种原始的新陈代谢,为后来出现的RNA复制提供了安全的环境。克雷布斯循环 Krebs cycle(柠檬酸循环)在需氧生物体内产生能量,以及在复杂有机化学物的生物合成中吸取二氧化碳和氢离子的中心地位,表明它是新陈代谢中最早进化的部分之一。与此相一致的是,地球化学家Russell提出“生命的目的是使二氧化碳氢化”(这是“新陈代谢优先”而不是“基因优先”情形的一部分)。物理学家杰里米·英格兰Jeremy England提出,从一般的热力学考虑,生命是不可避免的:
      +
有几个模型否定了"裸基因"的自我复制,而是假设出现了一种原始的新陈代谢,为后来出现的RNA复制提供了安全的环境。克雷布斯循环 Krebs cycle(柠檬酸循环)在需氧生物体内产生能量,以及在复杂有机化学物的生物合成中吸取二氧化碳和氢离子的中心地位,表明它是新陈代谢中最早进化的部分之一。<ref name="Lane 2009">{{harvnb|Lane|2009}}</ref>与此相一致的是,地球化学家Russell提出“生命的目的是使二氧化碳氢化”(这是“新陈代谢优先”而不是“基因优先”情形的一部分)。<ref name="Musser">{{cite web |url=http://blogs.scientificamerican.com/observations/how-life-arose-on-earth-and-how-a-singularity-might-bring-it-down/ |title=How Life Arose on Earth, and How a Singularity Might Bring It Down |last=Musser |first=George |authorlink=George Musser |date=23 September 2011 |work=Observations |type=Blog  |accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150617211804/http://blogs.scientificamerican.com/observations/how-life-arose-on-earth-and-how-a-singularity-might-bring-it-down/ |archivedate=17 June 2015}}</ref><ref name="Carroll">{{cite web |url=http://blogs.discovermagazine.com/cosmicvariance/2010/03/10/free-energy-and-the-meaning-of-life/ |title=Free Energy and the Meaning of Life |last=Carroll |first=Sean |authorlink=Sean M. Carroll |date=10 March 2010 |work=Cosmic Variance |type=Blog |publisher=Discover|accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150714074327/http://blogs.discovermagazine.com/cosmicvariance/2010/03/10/free-energy-and-the-meaning-of-life/ |archivedate=14 July 2015}}</ref>物理学家杰里米·英格兰Jeremy England提出,从一般的热力学考虑,生命是不可避免的:
    +
<blockquote>
 +
... when a group of atoms is driven by an external source of energy (like the sun or chemical fuel) and surrounded by a heat bath (like the ocean or atmosphere), it will often gradually restructure itself in order to dissipate increasingly more energy. This could mean that under certain conditions, matter inexorably acquires the key physical attribute associated with life.<ref>{{cite journal |last=Wolchover |first=Natalie |date=22 January 2014 |title=A New Physics Theory of Life |url=https://www.quantamagazine.org/20140122-a-new-physics-theory-of-life/ |journal=Quanta Magazine |accessdate=2015-06-17 |url-status=live |archiveurl=https://web.archive.org/web/20150613052830/https://www.quantamagazine.org/20140122-a-new-physics-theory-of-life/ |archivedate=13 June 2015}}</ref><ref>{{cite journal |last=England |first=Jeremy L. |authorlink=Jeremy England |date=28 September 2013 |title=Statistical physics of self-replication |url=http://www.englandlab.com/uploads/7/8/0/3/7803054/2013jcpsrep.pdf |journal=[[Journal of Chemical Physics]] |volume=139 |issue=12 |page=121923 |arxiv=1209.1179 |bibcode=2013JChPh.139l1923E |doi=10.1063/1.4818538 |pmid=24089735  |accessdate=2015-06-18 |url-status=live |archiveurl=https://web.archive.org/web/20150604131515/http://www.englandlab.com/uploads/7/8/0/3/7803054/2013jcpsrep.pdf |archivedate=4 June 2015|hdl=1721.1/90392 |s2cid=478964 }}</ref>
 
   ...当一组原子受到外部能量源(如太阳或化学燃料)的驱动,并被热浴(如海洋或大气层)所包围时,它往往会逐渐重组自己,以耗散越来越多的能量。这可能意味着,在某些条件下,物质不可避免地获得了与生命相关的关键物理属性。
 
   ...当一组原子受到外部能量源(如太阳或化学燃料)的驱动,并被热浴(如海洋或大气层)所包围时,它往往会逐渐重组自己,以耗散越来越多的能量。这可能意味着,在某些条件下,物质不可避免地获得了与生命相关的关键物理属性。
 +
</blockquote>
 
***讨论:给我们一堆原子,我们会创造出什么呢?可是生命不是为了简单地耗散更多能量,相反,生物具有经济性***
 
***讨论:给我们一堆原子,我们会创造出什么呢?可是生命不是为了简单地耗散更多能量,相反,生物具有经济性***
One of the earliest incarnations of this idea was put forward in 1924 with Oparin's notion of primitive self-replicating vesicles which predated the discovery of the structure of DNA. Variants in the 1980s and 1990s include Wächtershäuser's iron–sulfur world theory and models introduced by [[Christian de Duve]] based on the chemistry of [[thioester]]s. More abstract and theoretical arguments for the plausibility of the emergence of metabolism without the presence of genes include a mathematical model introduced by [[Freeman Dyson]] in the early 1980s and [[Stuart Kauffman]]'s notion of collectively autocatalytic sets, discussed later that decade.
      
这一思想最早的化身之一是在1924年提出的Oparin的原始自复制囊泡的概念,这比DNA结构的发现还要早。20世纪80年代和90年代的变体包括Wächtershäuser的铁-硫世界理论和克里斯蒂安·德·杜夫 Christian de Duve提出的基于硫酯的化学的模型。对于在没有基因存在的情况下新陈代谢出现的合理性,更加抽象和理论化的论证,包括弗里曼·戴森Freeman Dyson在20世纪80年代初提出的数学模型和斯图亚特·考夫曼Stuart Kauffman的集体自催化集的概念,该观点在该十年晚些时候进行了讨论。
 
这一思想最早的化身之一是在1924年提出的Oparin的原始自复制囊泡的概念,这比DNA结构的发现还要早。20世纪80年代和90年代的变体包括Wächtershäuser的铁-硫世界理论和克里斯蒂安·德·杜夫 Christian de Duve提出的基于硫酯的化学的模型。对于在没有基因存在的情况下新陈代谢出现的合理性,更加抽象和理论化的论证,包括弗里曼·戴森Freeman Dyson在20世纪80年代初提出的数学模型和斯图亚特·考夫曼Stuart Kauffman的集体自催化集的概念,该观点在该十年晚些时候进行了讨论。
   −
  −
Orgel summarized his analysis by stating, < blockquote >There is at present no reason to expect that multistep cycles such as the reductive citric acid cycle will self-organize on the surface of FeS/FeS<sub>2</sub> or some other mineral."<ref>{{cite journal |last=Orgel |first=Leslie E. |date=7 November 2000 |title=Self-organizing biochemical cycles |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue=23 |pages=12503–12507 |bibcode=2000PNAS...9712503O |doi=10.1073/pnas.220406697|pmc=18793 |pmid=11058157}}</ref>< /blockquote > It is possible that another type of metabolic pathway was used at the beginning of life. For example, instead of the reductive citric acid cycle, the "open" [[acetyl-CoA]] pathway (another one of the five recognized ways of carbon dioxide fixation in nature today) would be compatible with the idea of self-organization on a metal sulfide surface. The key enzyme of this pathway, [[carbon monoxide dehydrogenase]]/[[CO-methylating acetyl-CoA synthase|acetyl-CoA synthase]], harbors mixed nickel-iron-sulfur clusters in its reaction centers and catalyzes the formation of acetyl-CoA (similar to acetyl-thiol) in a single step. There are increasing concerns, however, that prebiotic [[Thioacetic acid|thiolated]] and [[thioester]] compounds are thermodynamically and kinetically unfavorable to accumulate in presumed prebiotic conditions (i.e. hydrothermal vents).<ref>{{cite journal|last1=Chandru|first1=Kuhan|last2=Gilbert|first2=Alexis|last3=Butch|first3=Christopher|last4=Aono|first4=Masashi|last5=Cleaves|first5=Henderson James II|title=The Abiotic Chemistry of Thiolated Acetate Derivatives and the Origin of Life|journal=Scientific Reports|date=21 July 2016|volume=6|issue=29883|pages=29883|doi=10.1038/srep29883|pmid=27443234|pmc=4956751|bibcode=2016NatSR...629883C}}</ref> It has also been proposed that [[cysteine]] and [[homocysteine]] may have reacted with [[nitrile]]s resulting from the [[Strecker amino acid synthesis|Stecker reaction]], readily forming catalytic thiol-reach poplypeptides.<ref>{{Cite journal|last1=Vallee|first1=Yannick|last2=Shalayel|first2=Ibrahim|last3=Ly|first3=Kieu-Dung|last4=Rao|first4=K. V. Raghavendra|last5=Paëpe|first5=Gael De|last6=Märker|first6=Katharina|last7=Milet|first7=Anne|date=2017-11-08|title=At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis|url=http://www.ijdb.ehu.es/web/paper/170028yv/at-the-very-beginning-of-life-on-earth-the-thiol-rich-peptide-trp-world-hypothesis|journal=International Journal of Developmental Biology|volume=61|issue=8–9|pages=471–478|doi=10.1387/ijdb.170028yv|pmid=29139533|doi-access=free}}</ref>
      
Orgel总结他的分析说,
 
Orgel总结他的分析说,
 +
<blockquote>
 +
There is at present no reason to expect that multistep cycles such as the reductive citric acid cycle will self-organize on the surface of FeS/FeS<sub>2</sub> or some other mineral."<ref>{{cite journal |last=Orgel |first=Leslie E. |date=7 November 2000 |title=Self-organizing biochemical cycles |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue=23 |pages=12503–12507 |bibcode=2000PNAS...9712503O |doi=10.1073/pnas.220406697|pmc=18793 |pmid=11058157}}</ref>
   −
  目前没有理由期望多步循环,如还原性柠檬酸循环会在FeS/ FeS<sub>2</sub>或一些其他矿物的表面自组织。"
+
目前没有理由期望多步循环,如还原性柠檬酸循环会在FeS/ FeS<sub>2</sub>或一些其他矿物的表面自组织。"
 +
</blockquote>
   −
有可能在生命诞生之初就使用了另一种代谢通路。例如,"开放的"乙酰-辅酶A通路(当今公认的自然界中五种二氧化碳固定方式中的另一种)而不是还原性柠檬酸循环,会符合金属硫化物表面的自组织的想法。该通路的关键酶--一氧化碳脱氢酶/乙酰-辅酶A合成酶,在其反应中心藏有镍-铁-硫混合簇,并在一个步骤中催化形成乙酰-辅酶A(类似乙酰-硫醇)。然而,越来越多的人担心,在热力学和动力学上,生命起源以前的硫醇化和硫酯化合物不利于在假定的生命起源以前的条件(如,热液喷口)中积累。然而也有人提出,半胱氨酸和同型半胱氨酸可能已经与施特克反应 Stecker reaction产生的腈类反应,容易形成起催化作用的富硫醇的多肽。*** thiol-reach 应为thiol-rich,poplypeptodes应为polypeptides***
+
有可能在生命诞生之初就使用了另一种代谢通路。例如,"开放的"乙酰-辅酶A通路(当今公认的自然界中五种二氧化碳固定方式中的另一种)而不是还原性柠檬酸循环,会符合金属硫化物表面的自组织的想法。该通路的关键酶--一氧化碳脱氢酶/乙酰-辅酶A合成酶,在其反应中心藏有镍-铁-硫混合簇,并在一个步骤中催化形成乙酰-辅酶A(类似乙酰-硫醇)。然而,越来越多的人担心,在热力学和动力学上,生命起源以前的硫醇化和硫酯化合物不利于在假定的生命起源以前的条件(如,热液喷口)中积累。<ref>{{cite journal|last1=Chandru|first1=Kuhan|last2=Gilbert|first2=Alexis|last3=Butch|first3=Christopher|last4=Aono|first4=Masashi|last5=Cleaves|first5=Henderson James II|title=The Abiotic Chemistry of Thiolated Acetate Derivatives and the Origin of Life|journal=Scientific Reports|date=21 July 2016|volume=6|issue=29883|pages=29883|doi=10.1038/srep29883|pmid=27443234|pmc=4956751|bibcode=2016NatSR...629883C}}</ref>然而也有人提出,半胱氨酸和同型半胱氨酸可能已经与施特克反应 Stecker reaction产生的腈类反应,容易形成起催化作用的富硫醇的多肽。<ref>{{Cite journal|last1=Vallee|first1=Yannick|last2=Shalayel|first2=Ibrahim|last3=Ly|first3=Kieu-Dung|last4=Rao|first4=K. V. Raghavendra|last5=Paëpe|first5=Gael De|last6=Märker|first6=Katharina|last7=Milet|first7=Anne|date=2017-11-08|title=At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis|url=http://www.ijdb.ehu.es/web/paper/170028yv/at-the-very-beginning-of-life-on-earth-the-thiol-rich-peptide-trp-world-hypothesis|journal=International Journal of Developmental Biology|volume=61|issue=8–9|pages=471–478|doi=10.1387/ijdb.170028yv|pmid=29139533|doi-access=free}}</ref>*** thiol-reach 应为thiol-rich,poplypeptodes应为polypeptides***
   −
=== Zinc-world hypothesis ===
  −
锌世界假说
  −
The zinc world (Zn-world) theory of Mulkidjanian<ref name="Mulkidjanian">{{cite journal |last=Mulkidjanian |first=Armen Y. |date=24 August 2009 |title=On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth |journal=Biology Direct |volume=4 |page=26 |doi=10.1186/1745-6150-4-26 |pmid=19703272 |pmc=3152778 }}</ref> is an extension of Wächtershäuser's pyrite hypothesis. Wächtershäuser based his theory of the initial chemical processes leading to informational molecules (RNA, peptides) on a regular mesh of electric charges at the surface of pyrite that may have facilitated the primeval [[polymerization]] by attracting reactants and arranging them appropriately relative to each other.<ref>{{cite journal |last=Wächtershäuser |first=Günter |date=December 1988 |title=Before Enzymes and Templates: Theory of Surface Metabolism |journal=[[Microbiology and Molecular Biology Reviews|Microbiological Reviews]] |volume=52 |pages=452–484 |issue=4 |pmc=373159 |pmid=3070320 |doi=10.1128/MMBR.52.4.452-484.1988 }}</ref> The Zn-world theory specifies and differentiates further.<ref name="Mulkidjanian" /><ref>{{cite journal |last1=Mulkidjanian |first1=Armen Y. |last2=Galperin |first2=Michael Y. |date=24 August 2009 |title=On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth |journal=Biology Direct |volume=4 |page=27 |doi=10.1186/1745-6150-4-27 |pmid=19703275 |pmc=2749021 }}</ref> Hydrothermal fluids rich in H<sub>2</sub>S interacting with cold primordial ocean (or Darwin's "warm little pond") water leads to the precipitation of metal sulfide particles. Oceanic [[Hydrothermal vent|vent systems]] and other hydrothermal systems have a zonal structure reflected in ancient [[Volcanogenic massive sulfide ore deposit|volcanogenic massive sulfide deposits]] (VMS) of hydrothermal origin. They reach many kilometers in diameter and date back to the [[Archean]] Eon. Most abundant are pyrite (FeS<sub>2</sub>), [[chalcopyrite]] (CuFeS<sub>2</sub>), and [[sphalerite]] (ZnS), with additions of [[galena]] (PbS) and [[alabandite]] (MnS). ZnS and MnS have a unique ability to store radiation energy, e.g. from UV light. During the relevant time window of the origins of replicating molecules, the primordial atmospheric pressure was high enough (>100&nbsp;bar, about 100 atmospheres) to precipitate near the Earth's surface, and UV irradiation was 10 to 100 times more intense than now; hence the unique photosynthetic properties mediated by ZnS provided just the right energy conditions to energize the synthesis of informational and metabolic molecules and the selection of photostable nucleobases.
     −
Mulkidjanian的锌世界(Zn-world)理论是Wächtershäuser的黄铁矿假说的延伸。Wächtershäuser根据他的导致信息分子(RNA、肽)的初始化学过程的理论建立在黄铁矿表面有规律的电荷网状结构上,这种网状结构可能通过吸引反应物并将它们适当地相对排列,促进了原始聚合。"锌世界 "理论进一步明确和区分了富含H<sub>2</sub>S的热流与寒冷的原始海洋(或Darwin的"温暖的小池塘")的水相互作用,导致金属硫化物颗粒的沉淀。大洋喷口系统和其他热液系统的区域结构反映在热液起源的古火山块状硫化物矿床(VMS)中。它们的直径达数千米,可追溯到太古宙。最丰富的是黄铁矿(FeS<sub>2</sub>)、黄铜矿(CuFeS<sub>2</sub>)和闪锌矿(ZnS),另外还有方铅矿(PbS)和硫锰矿(MnS)。ZnS和MnS具有独特的储存辐射能量的能力,例如来自紫外线的能量。在复制分子起源的相关时间窗口内,原始大气压足够高(>100巴,约100个大气压),可以在地球表面附近沉降,紫外线照射强度是现在的10~100倍,因此,ZnS所介导的独特的光合作用特性为供能信息分子和代谢分子的合成以及光稳定核酸碱基的选择提供了正好的能量条件。
      +
=== 锌世界假说===
   −
The Zn-world theory has been further filled out with experimental and theoretical evidence for the ionic constitution of the interior of the first proto-cells before archaea, bacteria and [[Origin of eukaryotes|proto-eukaryotes]] evolved. [[Archibald Macallum]] noted the resemblance of body fluids such as blood and lymph to seawater;<ref>{{cite journal |last=Macallum |first=A. B. |authorlink=Archibald Macallum |date=1 April 1926 |title=The Paleochemistry of the body fluids and tissues |journal=[[Physiological Reviews]] |volume=6 |issue=2 |pages=316–357|doi=10.1152/physrev.1926.6.2.316 }}</ref> however, the inorganic composition of all cells differ from that of modern seawater, which led Mulkidjanian and colleagues to reconstruct the "hatcheries" of the first cells combining geochemical analysis with [[Phylogenomics|phylogenomic]] scrutiny of the inorganic ion requirements of universal components of modern cells. The authors conclude that ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K<sup>+</sup>, Zn<sup>2+</sup>, Mn<sup>2+</sup>, and {{chem|[PO|4|]|3−}}. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in what we today call marine settings but is compatible with emissions of vapor-dominated zones of what we today call inland geothermal systems. Under the oxygen depleted, CO<sub>2</sub>-dominated primordial atmosphere, the chemistry of water condensates and exhalations near geothermal fields would resemble the internal milieu of modern cells. Therefore, the precellular stages of evolution may have taken place in shallow "Darwin ponds" lined with porous [[silicate minerals]] mixed with metal sulfides and enriched in K<sup>+</sup>, Zn<sup>2+</sup>, and phosphorus compounds.<ref>{{cite journal |last1=Mulkidjanian |first1=Armen Y. |last2=Bychkov |first2=Andrew Yu. |last3=Dibrova |first3=Daria V. |last4=Galperin |first4=Michael Y. |last5=Koonin |first5=Eugene V. |display-authors=3 |date=3 April 2012 |title=Origin of first cells at terrestrial, anoxic geothermal fields |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=109 |issue=14 |pages=E821–E830 |bibcode=2012PNAS..109E.821M |doi=10.1073/pnas.1117774109  |pmc=3325685 |pmid=22331915}}</ref><ref>For a deeper integrative version of this hypothesis, see in particular {{harvnb|Lankenau|2011|pp=225–286}}, interconnecting the "Two RNA worlds" concept and other detailed aspects; and {{cite journal |last1=Davidovich |first1=Chen |last2=Belousoff |first2=Matthew |last3=Bashan |first3=Anat |last4=Yonath |first4=Ada |authorlink4=Ada Yonath |date=September 2009 |title=The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery |journal=Research in Microbiology |volume=160 |issue=7 |pages=487–492 |doi=10.1016/j.resmic.2009.07.004 |pmid=19619641}}</ref>
+
Mulkidjanian的锌世界(Zn-world)理论<ref name="Mulkidjanian">{{cite journal |last=Mulkidjanian |first=Armen Y. |date=24 August 2009 |title=On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth |journal=Biology Direct |volume=4 |page=26 |doi=10.1186/1745-6150-4-26 |pmid=19703272 |pmc=3152778 }}</ref>是Wächtershäuser的黄铁矿假说的延伸。Wächtershäuser根据他的导致信息分子(RNA、肽)的初始化学过程的理论建立在黄铁矿表面有规律的电荷网状结构上,这种网状结构可能通过吸引反应物并将它们适当地相对排列,促进了原始聚合。<ref>{{cite journal |last=Wächtershäuser |first=Günter |date=December 1988 |title=Before Enzymes and Templates: Theory of Surface Metabolism |journal=[[Microbiology and Molecular Biology Reviews|Microbiological Reviews]] |volume=52 |pages=452–484 |issue=4 |pmc=373159 |pmid=3070320 |doi=10.1128/MMBR.52.4.452-484.1988 }}</ref>"锌世界 "理论进一步明确和区分了<ref name="Mulkidjanian" /><ref>{{cite journal |last1=Mulkidjanian |first1=Armen Y. |last2=Galperin |first2=Michael Y. |date=24 August 2009 |title=On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth |journal=Biology Direct |volume=4 |page=27 |doi=10.1186/1745-6150-4-27 |pmid=19703275 |pmc=2749021 }}</ref>富含H<sub>2</sub>S的热流与寒冷的原始海洋(或Darwin的"温暖的小池塘")的水相互作用,导致金属硫化物颗粒的沉淀。大洋喷口系统和其他热液系统的区域结构反映在热液起源的古火山块状硫化物矿床(VMS)中。它们的直径达数千米,可追溯到太古宙。最丰富的是黄铁矿(FeS<sub>2</sub>)、黄铜矿(CuFeS<sub>2</sub>)和闪锌矿(ZnS),另外还有方铅矿(PbS)和硫锰矿(MnS)。ZnS和MnS具有独特的储存辐射能量的能力,例如来自紫外线的能量。在复制分子起源的相关时间窗口内,原始大气压足够高(>100巴,约100个大气压),可以在地球表面附近沉降,紫外线照射强度是现在的10~100倍,因此,ZnS所介导的独特的光合作用特性为供能信息分子和代谢分子的合成以及光稳定核酸碱基的选择提供了正好的能量条件。
   −
锌世界理论已经被在古细菌、细菌和原真核生物演化之前的第一批原细胞内部的离子构成的实验和理论上的证据进一步充实了。阿奇博尔德·麦卡勒姆 Archibald Macallum注意到血液和淋巴等体液与海水的相似性;然而,所有细胞的无机成分与现代海水的无机成分不同,这使得Mulkidjanian及其同事结合地球化学分析和系统发育组学审查现代细胞普遍成分的无机离子需求,重建了第一批细胞的"孵化器"。作者得出的结论是,普遍存在的,并根据推断,原始的蛋白质和功能系统显示出对K<sup>+</sup>, Zn<sup>2+</sup>, Mn<sup>2+</sup>和[PO4]3−的亲和性和功能需求。
  −
地球化学重建表明,有利于细胞起源的离子成分不可能存在于我们今天所说的海洋环境中,而是与我们今天所说的内陆地热系统的蒸汽主导区的排放相符合。在缺氧的、以二氧化碳为主的原始大气下,地热场附近的水凝结物和蒸发物的化学性质会类似于现代细胞的内环境。因此,细胞前的进化阶段可能发生在浅层的"达尔文池塘"中,池塘内衬与金属硫化物混合的多孔硅酸盐矿物,富含K<sup>+</sup>, Zn<sup>2+</sup>和磷化合物。
      +
锌世界理论已经被在古细菌、细菌和原真核生物演化之前的第一批原细胞内部的离子构成的实验和理论上的证据进一步充实了。阿奇博尔德·麦卡勒姆 Archibald Macallum注意到血液和淋巴等体液与海水的相似性;<ref>{{cite journal |last=Macallum |first=A. B. |authorlink=Archibald Macallum |date=1 April 1926 |title=The Paleochemistry of the body fluids and tissues |journal=[[Physiological Reviews]] |volume=6 |issue=2 |pages=316–357|doi=10.1152/physrev.1926.6.2.316 }}</ref>然而,所有细胞的无机成分与现代海水的无机成分不同,这使得Mulkidjanian及其同事结合地球化学分析和系统发育组学审查现代细胞普遍成分的无机离子需求,重建了第一批细胞的"孵化器"。作者得出的结论是,普遍存在的,并根据推断,原始的蛋白质和功能系统显示出对K<sup>+</sup>, Zn<sup>2+</sup>, Mn<sup>2+</sup>和[PO4]3−的亲和性和功能需求。
 +
地球化学重建表明,有利于细胞起源的离子成分不可能存在于我们今天所说的海洋环境中,而是与我们今天所说的内陆地热系统的蒸汽主导区的排放相符合。在缺氧的、以二氧化碳为主的原始大气下,地热场附近的水凝结物和蒸发物的化学性质会类似于现代细胞的内环境。因此,细胞前的进化阶段可能发生在浅层的"达尔文池塘"中,池塘内衬与金属硫化物混合的多孔硅酸盐矿物,富含K<sup>+</sup>, Zn<sup>2+</sup>和磷化合物。<ref>{{cite journal |last1=Mulkidjanian |first1=Armen Y. |last2=Bychkov |first2=Andrew Yu. |last3=Dibrova |first3=Daria V. |last4=Galperin |first4=Michael Y. |last5=Koonin |first5=Eugene V. |display-authors=3 |date=3 April 2012 |title=Origin of first cells at terrestrial, anoxic geothermal fields |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=109 |issue=14 |pages=E821–E830 |bibcode=2012PNAS..109E.821M |doi=10.1073/pnas.1117774109  |pmc=3325685 |pmid=22331915}}</ref><ref>For a deeper integrative version of this hypothesis, see in particular {{harvnb|Lankenau|2011|pp=225–286}}, interconnecting the "Two RNA worlds" concept and other detailed aspects; and {{cite journal |last1=Davidovich |first1=Chen |last2=Belousoff |first2=Matthew |last3=Bashan |first3=Anat |last4=Yonath |first4=Ada |authorlink4=Ada Yonath |date=September 2009 |title=The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery |journal=Research in Microbiology |volume=160 |issue=7 |pages=487–492 |doi=10.1016/j.resmic.2009.07.004 |pmid=19619641}}</ref>
   −
==Other abiogenesis scenarios==
     −
其他非生物起源的情景
+
==其他非生物起源的情景==
We define a scenario as a set of related concepts pertinent to the origin of life that is or has been investigated. The concepts related to the Iron-Sulfur world can be considered as a scenario. We consider some other scenarios that may partially overlap with scenarios discussed above or with each other.
      
我们将情景定义为一组正在或已经被研究过的生命起源相关的一组相关概念。可以将与铁硫世界有关的概念视为一种情景。我们考虑一些其他情景,这些情景可能与上面讨论的方案或彼此部分重叠。
 
我们将情景定义为一组正在或已经被研究过的生命起源相关的一组相关概念。可以将与铁硫世界有关的概念视为一种情景。我们考虑一些其他情景,这些情景可能与上面讨论的方案或彼此部分重叠。
      −
===Chemical pathways described by computer===
+
===计算机描述的化学通路===
   −
计算机描述的化学通路
+
2020年9月,化学家们首次基于一个名为“ALLCHEMY”的新计算机程序,描述了从无生命生命起源以前的化学物质到复杂的生物化学物质可能产生生命体的化学通路。<ref name="SA-20200103">{{cite news |last=Starr |first=Michelle |title=A New Chemical 'Tree of The Origins of Life' Reveals Our Possible Molecular Evolution |url=https://www.sciencealert.com/a-new-chemical-tree-of-the-origins-of-life-reveals-our-possible-chemical-evolution |date=3 October 2020 |work=[[ScienceAlert]] |accessdate=3 October 2020 }}</ref><ref name="SCI-20200925">{{cite journal |author=Wolos, Agnieszka |display-authors=et al. |title=Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry |url=https://science.sciencemag.org/content/369/6511/eaaw1955 |date=25 September 2020 |journal=[[Science (journal)|Science]] |volume=369 |issue=6511 |doi=10.1126/science.aaw1955 |doi-broken-date=10 October 2020 |pmid=32973002 |accessdate=3 October 2020 }}</ref>
In September 2020, chemists described, for the first time, possible chemical pathways from nonliving prebiotic chemicals to [[Biochemistry|complex biochemicals]] that could give rise to [[Earliest known life forms|living organisms]], based on a new computer program named ALLCHEMY.<ref name="SA-20200103">{{cite news |last=Starr |first=Michelle |title=A New Chemical 'Tree of The Origins of Life' Reveals Our Possible Molecular Evolution |url=https://www.sciencealert.com/a-new-chemical-tree-of-the-origins-of-life-reveals-our-possible-chemical-evolution |date=3 October 2020 |work=[[ScienceAlert]] |accessdate=3 October 2020 }}</ref><ref name="SCI-20200925">{{cite journal |author=Wolos, Agnieszka |display-authors=et al. |title=Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry |url=https://science.sciencemag.org/content/369/6511/eaaw1955 |date=25 September 2020 |journal=[[Science (journal)|Science]] |volume=369 |issue=6511 |doi=10.1126/science.aaw1955 |doi-broken-date=10 October 2020 |pmid=32973002 |accessdate=3 October 2020 }}</ref>
     −
2020年9月,化学家们首次基于一个名为“ALLCHEMY”的新计算机程序,描述了从无生命生命起源以前的化学物质到复杂的生物化学物质可能产生生命体的化学通路。
      +
===超循环理论===
   −
===The hypercycle===
  −
超循环理论
  −
In the early 1970s, Manfred Eigen and [[Peter Schuster]] examined the transient stages between the molecular chaos and a self-replicating [[Hypercycle (chemistry)|hypercycle]] in a prebiotic soup.<ref>{{harvnb|Eigen|Schuster|1979}}</ref> In a hypercycle, the [[information]] storing system (possibly RNA) produces an [[enzyme]], which catalyzes the formation of another information system, in sequence until the product of the last aids in the formation of the first information system. Mathematically treated, hypercycles could create [[Quasispecies model|quasispecies]], which through natural selection entered into a form of Darwinian evolution. A boost to hypercycle theory was the discovery of [[ribozyme]]s capable of catalyzing their own chemical reactions. The hypercycle theory requires the existence of complex biochemicals, such as nucleotides, which do not form under the conditions proposed by the Miller–Urey experiment.
     −
20世纪70年代初,曼弗雷德·艾根 Manfred Eigen和彼得·舒斯特 Peter Schuster研究了分子混沌和前生物汤中的自复制超循环之间的瞬时阶段。在超循环中,信息存储系统(可能是RNA)产生一种酶,这种酶依次催化另一个信息系统的形成,直到最后一个信息系统的产物帮助第一个信息系统的形成。经过数学处理,超循环可以创造准物种,通过自然选择进入一种达尔文的进化论的形式。对超循环理论的推动是发现了能够催化他们自身的化学反应的核酶。超循环理论要求存在如核苷酸等复杂的生化物质,而在Miller–Urey实验提出的条件下,核苷酸是不会形成的。
+
20世纪70年代初,曼弗雷德·艾根 Manfred Eigen和彼得·舒斯特 Peter Schuster研究了分子混沌和前生物汤中的自复制超循环之间的瞬时阶段。<ref>{{harvnb|Eigen|Schuster|1979}}</ref>在超循环中,信息存储系统(可能是RNA)产生一种酶,这种酶依次催化另一个信息系统的形成,直到最后一个信息系统的产物帮助第一个信息系统的形成。经过数学处理,超循环可以创造准物种,通过自然选择进入一种达尔文的进化论的形式。对超循环理论的推动是发现了能够催化他们自身的化学反应的核酶。超循环理论要求存在如核苷酸等复杂的生化物质,而在Miller–Urey实验提出的条件下,核苷酸是不会形成的。
      −
===Organic pigments in dissipative structures===
+
===耗散结构中的有机颜料===
   −
耗散结构中的有机颜料
+
In his "Thermodynamic Dissipation Theory of the Origin and Evolution of Life", Karo Michaelian has taken the insight of Boltzmann and the work of Prigogine to its ultimate consequences regarding the origin of life. This theory postulates that the hallmark of the origin and evolution of life is the microscopic dissipative structuring of [[Biological pigment|organic pigments]] and their proliferation over the entire Earth surface.Present day life augments the entropy production of Earth in its solar environment by dissipating [[ultraviolet]] and [[Visible spectrum|visible]] [[photon]]s into heat through organic pigments in water. This heat then catalyzes a host of secondary dissipative processes such as the [[water cycle]], [[Ocean current|ocean]] and [[wind]] currents, [[Tropical cyclone|hurricanes]], etc.<ref name="Michaelian, K. 2011"/><ref name="HESS Opinions 'Biological catalysis"/> Michaelian argues that if the thermodynamic function of life today is to produce entropy through photon dissipation in organic pigments, then this probably was its function at its very beginnings. It turns out that both [[RNA]] and [[DNA]] when in water solution are very strong absorbers and extremely rapid dissipaters of ultraviolet light within the 230–290&nbsp;nm wavelength (UV-C) region, which is a part of the Sun's spectrum that could have penetrated the prebiotic [[Atmosphere of Earth|atmosphere]].<ref>Sagan, C. (1973) Ultraviolet Selection Pressure on the Earliest Organisms, J. Theor. Biol., 39, 195–200.</ref> In fact, not only RNA and DNA, but many fundamental molecules of life (those common to all three [[Domain (biology)|domains]] of life) are also pigments that absorb in the UV-C, and many of these also have a chemical affinity to RNA and DNA.<ref>{{cite journal |doi=10.5194/bg-12-4913-2015 |title=Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum |journal=Biogeosciences |volume=12 |issue=16 |pages=4913–4937 |year=2015 |last1=Michaelian |first1=K |last2=Simeonov |first2=A |bibcode=2015BGeo...12.4913M |arxiv=1405.4059v2 }}</ref> [[Nucleic acid]]s may thus have acted as acceptor molecules to the UV-C photon [[Excited state|excited]] antenna pigment donor molecules by providing an [[Conical intersection|ultrafast channel]] for dissipation. Michaelian has shown using the formalism of non-linear irreversible thermodynamics that there would have existed during the [[Archean]] a thermodynamic imperative to the abiogenic UV-C [[Photochemistry|photochemical]] synthesis and proliferation of these pigments over the entire Earth surface if they acted as [[Catalysis|catalysts]] to augment the dissipation of the solar photons.<ref>{{cite journal |doi=10.1088/1742-6596/475/1/012010 |title=A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution |journal= Journal of Physics: Conference Series |volume=475 |issue=1 |pages=012010 |year=2013 |last1=Michaelian |first1=K |bibcode= 2013JPhCS.475a2010M |arxiv=1307.5924 |s2cid=118564759 }}</ref> By the end of the Archean, with life-induced [[ozone]] dissipating UV-C light in the Earth's upper atmosphere, it would have become ever more improbable for a completely new life to emerge that did not rely on the complex metabolic pathways already existing since now the free energy in the photons arriving at Earth's surface would have been insufficient for direct breaking and remaking of [[covalent bond]]s. It has been suggested, however, that such changes in the surface flux of ultraviolet radiation due to geophysical events affecting the atmosphere could have been what promoted the development of complexity in life based on existing metabolic pathways, for example during the [[Cambrian explosion]]<ref>{{cite journal | last1 = Doglioni | first1 = C. | last2 = Pignatti | first2 = J. | last3 = Coleman | first3 = M. | year = 2016 | title = Why did life develop on the surface of the Earth in the Cambrian? | journal = Geoscience Frontiers | volume = 7 | issue = 6| pages = 865–873 | doi=10.1016/j.gsf.2016.02.001| url = https://iris.uniroma1.it/bitstream/11573/925124/1/Doglioni_Why_2016.pdf }}</ref>
In his "Thermodynamic Dissipation Theory of the Origin and Evolution of Life",<ref>{{cite journal |bibcode=2011ESD.....2...37M |title= Thermodynamic Origin of Life |journal=Earth System Dynamics |volume=0907 |issue=2011 |pages=37–51 |last1=Michaelian |first1=K |year=2009 |arxiv=0907.0042 |doi=10.5194/esd-2-37-2011 |s2cid= 14574109 }}</ref><ref name="Michaelian, K. 2011">{{cite journal |doi=10.5194/esd-2-37-2011 |title= Thermodynamic dissipation theory for the origin of life |journal=Earth System Dynamics |volume=2 |issue=1 |pages=37–51 |year=2011 |last1= Michaelian |first1=K |bibcode=2011ESD.....2...37M |arxiv=0907.0042 |s2cid= 14574109 }}</ref><ref name="Michaelian, K. 2017">{{cite journal |doi= 10.1016/j.heliyon.2017.e00424 |pmid=29062973 |pmc=5647473 |title=Microscopic dissipative structuring and proliferation at the origin of life |journal=Heliyon |volume=3 |issue=10 |pages=e00424 |year=2017 |last1=Michaelian |first1=Karo }}</ref> Karo Michaelian has taken the insight of Boltzmann and the work of Prigogine to its ultimate consequences regarding the origin of life. This theory postulates that the hallmark of the origin and evolution of life is the microscopic dissipative structuring of [[Biological pigment|organic pigments]] and their proliferation over the entire Earth surface.<ref name="Michaelian, K. 2017" /> Present day life augments the entropy production of Earth in its solar environment by dissipating [[ultraviolet]] and [[Visible spectrum|visible]] [[photon]]s into heat through organic pigments in water. This heat then catalyzes a host of secondary dissipative processes such as the [[water cycle]], [[Ocean current|ocean]] and [[wind]] currents, [[Tropical cyclone|hurricanes]], etc.<ref name="Michaelian, K. 2011"/><ref name="HESS Opinions 'Biological catalysis"/> Michaelian argues that if the thermodynamic function of life today is to produce entropy through photon dissipation in organic pigments, then this probably was its function at its very beginnings. It turns out that both [[RNA]] and [[DNA]] when in water solution are very strong absorbers and extremely rapid dissipaters of ultraviolet light within the 230–290&nbsp;nm wavelength (UV-C) region, which is a part of the Sun's spectrum that could have penetrated the prebiotic [[Atmosphere of Earth|atmosphere]].<ref>Sagan, C. (1973) Ultraviolet Selection Pressure on the Earliest Organisms, J. Theor. Biol., 39, 195–200.</ref> In fact, not only RNA and DNA, but many fundamental molecules of life (those common to all three [[Domain (biology)|domains]] of life) are also pigments that absorb in the UV-C, and many of these also have a chemical affinity to RNA and DNA.<ref>{{cite journal |doi=10.5194/bg-12-4913-2015 |title=Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum |journal=Biogeosciences |volume=12 |issue=16 |pages=4913–4937 |year=2015 |last1=Michaelian |first1=K |last2=Simeonov |first2=A |bibcode=2015BGeo...12.4913M |arxiv=1405.4059v2 }}</ref> [[Nucleic acid]]s may thus have acted as acceptor molecules to the UV-C photon [[Excited state|excited]] antenna pigment donor molecules by providing an [[Conical intersection|ultrafast channel]] for dissipation. Michaelian has shown using the formalism of non-linear irreversible thermodynamics that there would have existed during the [[Archean]] a thermodynamic imperative to the abiogenic UV-C [[Photochemistry|photochemical]] synthesis and proliferation of these pigments over the entire Earth surface if they acted as [[Catalysis|catalysts]] to augment the dissipation of the solar photons.<ref>{{cite journal |doi=10.1088/1742-6596/475/1/012010 |title=A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution |journal= Journal of Physics: Conference Series |volume=475 |issue=1 |pages=012010 |year=2013 |last1=Michaelian |first1=K |bibcode= 2013JPhCS.475a2010M |arxiv=1307.5924 |s2cid=118564759 }}</ref> By the end of the Archean, with life-induced [[ozone]] dissipating UV-C light in the Earth's upper atmosphere, it would have become ever more improbable for a completely new life to emerge that did not rely on the complex metabolic pathways already existing since now the free energy in the photons arriving at Earth's surface would have been insufficient for direct breaking and remaking of [[covalent bond]]s. It has been suggested, however, that such changes in the surface flux of ultraviolet radiation due to geophysical events affecting the atmosphere could have been what promoted the development of complexity in life based on existing metabolic pathways, for example during the [[Cambrian explosion]]<ref>{{cite journal | last1 = Doglioni | first1 = C. | last2 = Pignatti | first2 = J. | last3 = Coleman | first3 = M. | year = 2016 | title = Why did life develop on the surface of the Earth in the Cambrian? | journal = Geoscience Frontiers | volume = 7 | issue = 6| pages = 865–873 | doi=10.1016/j.gsf.2016.02.001| url = https://iris.uniroma1.it/bitstream/11573/925124/1/Doglioni_Why_2016.pdf }}</ref>
     −
在他的 "生命起源和进化的热力学耗散理论 "中,卡洛·米迦勒安 Karo Michaelian将Boltzmann的洞见和Prigogine的工作用于关于生命起源的最终结果。该理论假设生命起源和进化的标志是有机颜料的微观耗散结构及其在整个地球表面的扩散。现今的生命通过将紫外线和可见光子通过水中的有机颜料耗散成热能,增强了地球在太阳环境中的熵产生。这种热量就会催化大量的二次耗散过程,如水循环、洋流和风流、飓风等。Michaelian认为,如果说今天生命的热力学功能是通过有机颜料中光子耗散产生熵,那么这可能是它在一开始就具有的功能。事实证明,RNA和DNA在水溶液中时,都是230-290nm波长(UV-C)区域内紫外线的极强吸收者和极快耗散者,这是太阳光谱中可能穿透生命起源以前大气层的一部分。事实上,不仅是RNA和DNA,许多生命的基本分子(生命所有三个域共同的分子)也是在UV-C中吸收的色素,其中许多也与RNA和DNA有化学亲和力。因此,核酸可能通过提供一个超快的耗散通道,充当了UV-C光子激发的天线色素供体分子的受体分子。Michaelian用非线性不可逆热力学的形式体系表明,在太古宙,如果这些色素作为催化剂来增强太阳光子的耗散,那么这些色素的生命起源前UV-C光化学合成和扩散在整个地球表面就会存在一种热力学上的必然性。到了太古宙末期,随着生命诱导的臭氧使地球上层大气中的UV-C光耗散,要想出现一种不依赖已有的复杂代谢通路的全新生命将变得越来越不可能,因为现在到达地球表面的光子中的自由能已经不足以直接破坏和重造共价键。然而,有人认为,由于影响大气层的地球物理事件造成的紫外线辐射的地表通量的这种变化,可能是在现有代谢通路的基础上促进生命复杂性发展的原因,例如在寒武纪生命大爆发期间。
+
在他的 "生命起源和进化的热力学耗散理论 "中,<ref>{{cite journal |bibcode=2011ESD.....2...37M |title= Thermodynamic Origin of Life |journal=Earth System Dynamics |volume=0907 |issue=2011 |pages=37–51 |last1=Michaelian |first1=K |year=2009 |arxiv=0907.0042 |doi=10.5194/esd-2-37-2011 |s2cid= 14574109 }}</ref><ref name="Michaelian, K. 2011">{{cite journal |doi=10.5194/esd-2-37-2011 |title= Thermodynamic dissipation theory for the origin of life |journal=Earth System Dynamics |volume=2 |issue=1 |pages=37–51 |year=2011 |last1= Michaelian |first1=K |bibcode=2011ESD.....2...37M |arxiv=0907.0042 |s2cid= 14574109 }}</ref><ref name="Michaelian, K. 2017">{{cite journal |doi= 10.1016/j.heliyon.2017.e00424 |pmid=29062973 |pmc=5647473 |title=Microscopic dissipative structuring and proliferation at the origin of life |journal=Heliyon |volume=3 |issue=10 |pages=e00424 |year=2017 |last1=Michaelian |first1=Karo }}</ref>卡洛·米迦勒安 Karo Michaelian将Boltzmann的洞见和Prigogine的工作用于关于生命起源的最终结果。该理论假设生命起源和进化的标志是有机颜料的微观耗散结构及其在整个地球表面的扩散。现今的生命通过将紫外线和可见光子通过水中的有机颜料耗散成热能,增强了地球在太阳环境中的熵产生。这种热量就会催化大量的二次耗散过程,如水循环、洋流和风流、飓风等。Michaelian认为,如果说今天生命的热力学功能是通过有机颜料中光子耗散产生熵,那么这可能是它在一开始就具有的功能。事实证明,RNA和DNA在水溶液中时,都是230-290nm波长(UV-C)区域内紫外线的极强吸收者和极快耗散者,这是太阳光谱中可能穿透生命起源以前大气层的一部分。事实上,不仅是RNA和DNA,许多生命的基本分子(生命所有三个域共同的分子)也是在UV-C中吸收的色素,其中许多也与RNA和DNA有化学亲和力。因此,核酸可能通过提供一个超快的耗散通道,充当了UV-C光子激发的天线色素供体分子的受体分子。Michaelian用非线性不可逆热力学的形式体系表明,在太古宙,如果这些色素作为催化剂来增强太阳光子的耗散,那么这些色素的生命起源前UV-C光化学合成和扩散在整个地球表面就会存在一种热力学上的必然性。到了太古宙末期,随着生命诱导的臭氧使地球上层大气中的UV-C光耗散,要想出现一种不依赖已有的复杂代谢通路的全新生命将变得越来越不可能,因为现在到达地球表面的光子中的自由能已经不足以直接破坏和重造共价键。然而,有人认为,由于影响大气层的地球物理事件造成的紫外线辐射的地表通量的这种变化,可能是在现有代谢通路的基础上促进生命复杂性发展的原因,例如在寒武纪生命大爆发期间。
 
***讨论:应该做一张图,标注这些理论试图解释的生命起源的时间段,以及瞄准的方面,看看理论之间是否自洽,如何互相联系,以及各自缺乏哪些方面的思考***
 
***讨论:应该做一张图,标注这些理论试图解释的生命起源的时间段,以及瞄准的方面,看看理论之间是否自洽,如何互相联系,以及各自缺乏哪些方面的思考***
  
7,129

个编辑

导航菜单