更改

跳到导航 跳到搜索
添加36字节 、 2021年6月2日 (三) 11:06
无编辑摘要
第240行: 第240行:     
* Any score that is 'finer' than the propensity score is a balancing score (i.e.: <math>e(X)=f(b(X))</math> for some function ''f''). The propensity score is the coarsest balancing score function, as it takes a (possibly) multidimensional object (''X''<sub>''i''</sub>) and transforms it into one dimension (although others, obviously, also exist), while <math>b(X)=X</math> is the finest one.
 
* Any score that is 'finer' than the propensity score is a balancing score (i.e.: <math>e(X)=f(b(X))</math> for some function ''f''). The propensity score is the coarsest balancing score function, as it takes a (possibly) multidimensional object (''X''<sub>''i''</sub>) and transforms it into one dimension (although others, obviously, also exist), while <math>b(X)=X</math> is the finest one.
* 任何比倾向性评分更“精细”的得分都是平衡得分(即:对于函数''f'',<math>e(X)=f(b(X))</math>)。倾向性评分是最粗粒度的平衡得分函数,因为它把一个(可能是)多维的对象(''X''<sub>''i''</sub>)转换成一维(尽管其他维度显然也存在),而<math>b(X)=X</math>则是最细粒度的平衡得分函数。
+
* 任何比倾向性评分更“精细”的得分都是平衡得分(即:对于函数''f'',<math>e(X)=f(b(X))</math>)。倾向性评分是最粗粒度的平衡得分函数,因为它把一个(可能是)多维的对象(''X''<sub>''i''</sub>)转换成只有一维(尽管其他维度显然也存在),而<math>b(X)=X</math>则是最细粒度的平衡得分函数(保留全部维度)。
    
* If treatment assignment is strongly ignorable given ''X'' then:
 
* If treatment assignment is strongly ignorable given ''X'' then:
第263行: 第263行:  
If we think of the value of Z as a parameter of the population that impacts the distribution of X then the balancing score serves as a sufficient statistic for Z. Furthermore, the above theorems indicate that the propensity score is a minimal sufficient statistic if thinking of Z as a parameter of X. Lastly, if treatment assignment Z is strongly ignorable given X then the propensity score is a minimal sufficient statistic for the joint distribution of {\displaystyle (r_{0},r_{1})}{\displaystyle (r_{0},r_{1})}.
 
If we think of the value of Z as a parameter of the population that impacts the distribution of X then the balancing score serves as a sufficient statistic for Z. Furthermore, the above theorems indicate that the propensity score is a minimal sufficient statistic if thinking of Z as a parameter of X. Lastly, if treatment assignment Z is strongly ignorable given X then the propensity score is a minimal sufficient statistic for the joint distribution of {\displaystyle (r_{0},r_{1})}{\displaystyle (r_{0},r_{1})}.
   −
如果我们把''Z''的值想成影响''X''分布的群体参数,则平衡得分充当了''Z''的充分统计量。进一步,上述定理指出,如果把''Z''视为''X''的参数,则倾向性评分就是最小充分统计量。最后,给定''X'',如果''Z''是强可忽略的,则倾向性评分是<math>(r_0, r_1)</math>联合分布的最小统计量。
+
如果我们把''Z''的值想成影响''X''分布的群体参数,则平衡得分充当了''Z''的充分统计量。进一步,上述定理指出,如果把''Z''视为''X''的参数,则倾向性评分就是最小充分统计量。最后,给定''X'',如果''Z''是强可忽略的,则倾向性评分是<math>(r_0, r_1)</math>联合分布的最小充分统计量。
     
66

个编辑

导航菜单