第18行: |
第18行: |
| #回顾每一层的大小(Size)和每一层中所有元素的<font color="#ff8000"> '''数值分布 Numerical distribution''' </font>。确定抽样类型,按比例或不按比例分层抽样。 | | #回顾每一层的大小(Size)和每一层中所有元素的<font color="#ff8000"> '''数值分布 Numerical distribution''' </font>。确定抽样类型,按比例或不按比例分层抽样。 |
| #按照第5步中的规定进行所选的随机抽样。至少,必须从每个阶层中选择一种元素,以便最终样品包括每个阶层的代表。如果从每个阶层中选择两个或两个以上的元素,则可以计算所收集数据的<font color="#ff8000"> '''误差范围 Error margins''' </font>。<ref name=":5" /> | | #按照第5步中的规定进行所选的随机抽样。至少,必须从每个阶层中选择一种元素,以便最终样品包括每个阶层的代表。如果从每个阶层中选择两个或两个以上的元素,则可以计算所收集数据的<font color="#ff8000"> '''误差范围 Error margins''' </font>。<ref name=":5" /> |
| + | |
| + | == Techniques == |
| + | |
| + | [[File:Simple_random_sampling_after_stratification_step.png|thumb|分层后简单随机抽样]] |
| + | |
| + | Stratified randomization decides one or multiple prognostic factors to make subgroups, on average, have similar entry characteristics. The patient factor can be accurately decided by examining the outcome in previous studies.<ref>{{Cite journal|last=Sylvester|first=Richard|date=December 1982|title=Fundamentals of clinical trials|journal=Controlled Clinical Trials|volume=3|issue=4|pages=385–386|doi=10.1016/0197-2456(82)90029-0|issn=0197-2456}}</ref> |
| + | |
| + | <font color="#32cd32"> 分层随机试验决定一个或多个预后因素,使亚组平均具有相似的进入特征。Stratified randomization decides one or multiple prognostic factors to make subgroups, on average, have similar entry characteristics.</font> 通过检查先前研究的结果,可以准确地确定患者因素。<ref>{{Cite journal|last=Sylvester|first=Richard|date=December 1982|title=Fundamentals of clinical trials|journal=Controlled Clinical Trials|volume=3|issue=4|pages=385–386|doi=10.1016/0197-2456(82)90029-0|issn=0197-2456}}</ref> |
| + | |
| + | The number of subgroups can be calculated by multiplying the number of strata for each factor. Factors are measured before or at the time of randomization and experimental subjects are divided into several subgroups or strata according to the results of measurements.<ref name=":0">{{Cite book|last=Pocock, Stuart J.|title=Clinical trials : a practical approach|publisher=John Wiley & Sons Ltd|date=Jul 1, 2013|isbn=978-1-118-79391-6|location=Chichester|oclc=894581169}}</ref> |
| + | 子群的数量可以通过乘以每个因素的层数来计算。在随机化前或随机化时测量因素,并根据测量结果将实验对象分为若干亚组或层。 |
| + | |
| + | Within each stratum, several randomization strategies can be applied, which involves [[Simple random sample|simple randomization]], [[Blocking (statistics)#Blocking used for nuisance factors that can be controlled|blocked randomization]], and [[Minimisation (clinical trials)|minimization]]. |
| + | |
| + | 在每一层中,可以应用几种随机试验策略,包括<font color="#ff8000"> '''简单随机试验 Simple randomization''' </font>、<font color="#ff8000"> '''分块随机试验 Blocked randomization''' </font>和<font color="#ff8000"> '''最小化试验 Minimization''' </font>。 |
| + | === Simple randomization within strata === |
| + | Simple randomization is considered as the easiest method for allocating subjects in each stratum. Subjects are assigned to each group purely randomly for every assignment. Even though it is easy to conduct, simple randomization is commonly applied in strata that contain more than 100 samples since a small sampling size would make assignment unequal.<ref name=":0" /> |
| + | |
| + | 简单随机试验被认为是在每个阶层中分配受试者的最简单方法。对于每个任务,受试者被完全随机地分配到每个组中。尽管简单的随机化很容易进行,但由于取样量小,分配不均,因此在含有100多个样本的地层中,通常采用简单的随机化方法。尽管很容易进行,但简单随机试验通常应用于包含 100 个以上样本的层,因为小样本量会使分配不均等。 |
| + | |
| + | ===分层内的区块随机试验 Block randomization within strata=== |
| + | |
| + | [[Randomized block design|Block randomization]], sometimes called permuted block randomization, applies blocks to allocate subjects from the same strata equally to each group in the study. In block randomization, allocation ratio (ratio of the number of one specific group over other groups) and group sizes are specified. The block size must be the multiples of the number of treatments so that samples in each stratum can be assigned to treatment groups with the intended ratio.<ref name=":0" /> For instance, there should be 4 or 8 strata in a clinical trial concerning breast cancer where age and nodal statuses are two prognostic factors and each factor is split into two-level. The different blocks can be assigned to samples in multiple ways including random list and computer programming.<ref>{{Cite web|url=https://www.sealedenvelope.com/help/redpill/latest/block/|title=Sealed Envelope {{!}} Random permuted blocks|date=Feb 25, 2020|website=www.sealedenvelope.com|access-date=2020-04-07}}</ref><ref>{{Citation|last1=Friedman|first1=Lawrence M.|title=Introduction to Clinical Trials|date=2010|work=Fundamentals of Clinical Trials|pages=1–18|publisher=Springer New York|isbn=978-1-4419-1585-6|last2=Furberg|first2=Curt D.|last3=DeMets|first3=David L.|doi=10.1007/978-1-4419-1586-3_1}}</ref> |
| + | |
| + | '''<font color="#ff8000"> 区块随机试验 Block randomization </font>''',有时称为置换区块随机试验,应用区块将来自同一阶层的受试者平均分配到研究中的每个组。 在区块随机试验中,指定了分配比率(一个特定组与其他组的数量之比)和组大小。 块大小必须是处理次数的倍数,以便每个层中的样本可以按预期比例分配到处理组。<ref name=":0" />例如,在一项关于乳腺癌的临床试验中,应该有 4 或 8 个层次,其中年龄和淋巴结状态是两个预后因素(prognostic factors),每个因素分为两个水平。 可以通过多种方式将不同的区块分配给样本,包括随机列表(random list)和计算机编程。 |
| + | |
| + | Block randomization is commonly used in the experiment with a relatively big sampling size to avoid the imbalance allocation of samples with important characteristics. In certain fields with strict requests of randomization such as clinical trials, the allocation would be predictable when there is no blinding process for conductors and the block size is limited. The blocks permuted randomization in strata could possibly cause an imbalance of samples among strata as the number of strata increases and the sample size is limited, For instance, there is a possibility that no sample is found meeting the characteristic of certain strata. |
| + | |
| + | 区块随机试验通常用于样本量较大的实验,以避免具有重要特征的样本分配不平衡。 在某些对随机试验有严格要求的领域,如临床试验,当没有对导体(conductors)进行盲法处理且区块块大小有限时,分配是可预测的。 分层中的块置换随机试验可能会随着分层数量的增加和样本量的限制而导致分层之间的样本不平衡,例如,有可能找不到符合某些分层特征的样本<ref>{{Cite book|title=Fundamentals of clinical trials|others=Friedman, Lawrence M., 1942-, Furberg, Curt,, DeMets, David L., 1944-, Reboussin, David,, Granger, Christopher B.|date=27 August 2015|isbn=978-3-319-18539-2|edition=Fifth|location=New York|oclc=919463985}}</ref>。 |
| | | |
| | | |