第82行: |
第82行: |
| | | |
| == 两个活动变量的势函数 == | | == 两个活动变量的势函数 == |
− |
| |
− |
| |
− |
| |
− | Umbilic catastrophes are examples of corank 2 catastrophes. They can be observed in [[optics]] in the focal surfaces created by light reflecting off a surface in three dimensions and are intimately connected with the geometry of nearly spherical surfaces.
| |
− |
| |
− | Umbilic catastrophes are examples of corank 2 catastrophes. They can be observed in optics in the focal surfaces created by light reflecting off a surface in three dimensions and are intimately connected with the geometry of nearly spherical surfaces.
| |
− |
| |
| 脐带灾难是2次灾难的例子。它们可以在光线从三维表面反射而形成的焦面的光学中观察到,并且与近球面的几何形状密切相关。 | | 脐带灾难是2次灾难的例子。它们可以在光线从三维表面反射而形成的焦面的光学中观察到,并且与近球面的几何形状密切相关。 |
− |
| |
− | Thom proposed that the hyperbolic umbilic catastrophe modeled the breaking of a wave and the elliptical umbilic modeled the creation of hair-like structures.
| |
− |
| |
− | Thom proposed that the hyperbolic umbilic catastrophe modeled the breaking of a wave and the elliptical umbilic modeled the creation of hair-like structures.
| |
| | | |
| Thom 提出双曲线脐状突变模拟了波的破裂,椭圆脐状突变模拟了毛发状结构的产生。 | | Thom 提出双曲线脐状突变模拟了波的破裂,椭圆脐状突变模拟了毛发状结构的产生。 |
第99行: |
第88行: |
| | | |
| === 双曲线脐点突变 === | | === 双曲线脐点突变 === |
− |
| |
− |
| |
− |
| |
| :<math>V = x^3 + y^3 + axy + bx +cy \, </math> | | :<math>V = x^3 + y^3 + axy + bx +cy \, </math> |
− |
| |
− | <math>V = x^3 + y^3 + axy + bx +cy \, </math>
| |
− |
| |
− | 数学 v x ^ 3 + y ^ 3 + axy + bx + cy,/ math
| |
| | | |
| === 椭圆脐灾变 === | | === 椭圆脐灾变 === |
− |
| |
− |
| |
− |
| |
| :<math>V = \frac{x^3}{3} - xy^2 + a(x^2+y^2) + bx + cy \, </math> | | :<math>V = \frac{x^3}{3} - xy^2 + a(x^2+y^2) + bx + cy \, </math> |
− |
| |
− | <math>V = \frac{x^3}{3} - xy^2 + a(x^2+y^2) + bx + cy \, </math>
| |
− |
| |
− | 3}-xy ^ 2 + a (x ^ 2 + y ^ 2) + bx + cy,/ math
| |
| | | |
| === 抛物线脐点突变 === | | === 抛物线脐点突变 === |
− |
| |
− |
| |
− |
| |
| :<math>V = x^2y + y^4 + ax^2 + by^2 + cx + dy \, </math> | | :<math>V = x^2y + y^4 + ax^2 + by^2 + cx + dy \, </math> |
− |
| |
− | <math>V = x^2y + y^4 + ax^2 + by^2 + cx + dy \, </math>
| |
− |
| |
− | 数学 v x ^ 2 y + y ^ 4 + ax ^ 2 + by ^ 2 + cx + dy ,/ math
| |
− |
| |
| | | |
| | | |
| | | |
| ==阿诺德记数法== | | ==阿诺德记数法== |
− | | + | [[弗拉迪米尔 · 阿诺德]]将这些灾难归为 ADE 类,因为它们与[[简单的李群]]有很深的联系。 |
− | [[Vladimir Arnold]] gave the catastrophes the [[ADE classification]], due to a deep connection with [[simple Lie group]]s. | |
− | | |
− | Vladimir Arnold gave the catastrophes the ADE classification, due to a deep connection with simple Lie groups.
| |
− | | |
− | 弗拉迪米尔 · 阿诺德将这些灾难归为 ADE 类,因为它们与简单的李群有很深的联系。
| |
| | | |
| *''A''<sub>0</sub> - a non-singular point: <math>V = x</math>. | | *''A''<sub>0</sub> - a non-singular point: <math>V = x</math>. |
− |
| |
− |
| |
| | | |
| *''A''<sub>1</sub> - a local extremum, either a stable minimum or unstable maximum <math>V = \pm x^2 + a x</math>. | | *''A''<sub>1</sub> - a local extremum, either a stable minimum or unstable maximum <math>V = \pm x^2 + a x</math>. |
− |
| |
− |
| |
| | | |
| *''A''<sub>2</sub> - the fold | | *''A''<sub>2</sub> - the fold |
− |
| |
− |
| |
| | | |
| *''A''<sub>3</sub> - the cusp | | *''A''<sub>3</sub> - the cusp |
− |
| |
− |
| |
| | | |
| *''A''<sub>4</sub> - the swallowtail | | *''A''<sub>4</sub> - the swallowtail |
− |
| |
− |
| |
| | | |
| *''A''<sub>5</sub> - the butterfly | | *''A''<sub>5</sub> - the butterfly |
− |
| |
− |
| |
| | | |
| *''A''<sub>k</sub> - a representative of an infinite sequence of one variable forms <math>V=x^{k+1}+\cdots</math> | | *''A''<sub>k</sub> - a representative of an infinite sequence of one variable forms <math>V=x^{k+1}+\cdots</math> |
− |
| |
− |
| |
| | | |
| *''D''<sub>4</sub><sup>−</sup> - the elliptical umbilic | | *''D''<sub>4</sub><sup>−</sup> - the elliptical umbilic |
− |
| |
− |
| |
| | | |
| *''D''<sub>4</sub><sup>+</sup> - the hyperbolic umbilic | | *''D''<sub>4</sub><sup>+</sup> - the hyperbolic umbilic |
− |
| |
− |
| |
| | | |
| *''D''<sub>5</sub> - the parabolic umbilic | | *''D''<sub>5</sub> - the parabolic umbilic |
− |
| |
− |
| |
| | | |
| *''D''<sub>k</sub> - a representative of an infinite sequence of further umbilic forms | | *''D''<sub>k</sub> - a representative of an infinite sequence of further umbilic forms |
− |
| |
− |
| |
| | | |
| *''E''<sub>6</sub> - the symbolic umbilic <math>V = x^3+y^4+a x y^2 +bxy+cx+dy+ey^2</math> | | *''E''<sub>6</sub> - the symbolic umbilic <math>V = x^3+y^4+a x y^2 +bxy+cx+dy+ey^2</math> |
− |
| |
− |
| |
| | | |
| *''E''<sub>7</sub> | | *''E''<sub>7</sub> |
− |
| |
− |
| |
| | | |
| *''E''<sub>8</sub> | | *''E''<sub>8</sub> |
− |
| |
− |
| |
− |
| |
− | There are objects in singularity theory which correspond to most of the other simple Lie groups.
| |
− |
| |
− | There are objects in singularity theory which correspond to most of the other simple Lie groups.
| |
| | | |
| 在奇点理论中有一些对象,它们对应于大多数其他简单的李群。 | | 在奇点理论中有一些对象,它们对应于大多数其他简单的李群。 |
第225行: |
第155行: |
| *[[Valentin Afraimovich|V. S. Afrajmovich]], V. I. Arnold, et al., Bifurcation Theory And Catastrophe Theory, {{ISBN|3-540-65379-1}} | | *[[Valentin Afraimovich|V. S. Afrajmovich]], V. I. Arnold, et al., Bifurcation Theory And Catastrophe Theory, {{ISBN|3-540-65379-1}} |
| *Bełej,M. Kulesza, S. Modeling the Real Estate Prices in Olsztyn under Instability Conditions. Folia Oeconomica Stetinensia. Volume 11, Issue 1, Pages 61–72, ISSN (Online) 1898-0198, ISSN (Print) 1730-4237, {{doi|10.2478/v10031-012-0008-7}}, 2013 | | *Bełej,M. Kulesza, S. Modeling the Real Estate Prices in Olsztyn under Instability Conditions. Folia Oeconomica Stetinensia. Volume 11, Issue 1, Pages 61–72, ISSN (Online) 1898-0198, ISSN (Print) 1730-4237, {{doi|10.2478/v10031-012-0008-7}}, 2013 |
− |
| |
− |
| |
− |
| |
| *Castrigiano, Domenico P. L. and Hayes, Sandra A. Catastrophe Theory, 2nd ed. Boulder: Westview, 2004. {{ISBN|0-8133-4126-4}} | | *Castrigiano, Domenico P. L. and Hayes, Sandra A. Catastrophe Theory, 2nd ed. Boulder: Westview, 2004. {{ISBN|0-8133-4126-4}} |
| | | |