通过计算各种真实网络的最大匹配,Liu等人<ref name="Liu-Nature-11"/>断言驱动节点的数量主要由网络度分布<math>P(k_\mathrm{in},k_\mathrm{out})</math>决定。他们还使用空腔方法计算了具有任意度分布的网络集合的驱动节点的平均数量。有趣的是,对于'''<font color="#FF8000">链图 Chain Graph </font>'''和'''<font color="#FF8000">弱密集连通图 Weak Densely Connected Graph </font>''',两者都具有非常不同的进出度分布;Liu等人的公式<ref name="Liu-Nature-11"/>将会计算得出出<math>{n_\mathrm{D}}</math>的相同值。此外,对于许多真实世界地网络,即食物网、神经元和代谢网络,Liu等人计算的<math>{n_\mathrm{D}}^{real}</math> 和 <math>{n_\mathrm{D}}^\mathrm{rand\_degree}</math> 值的不匹配<ref name="Liu-Nature-11"/> 。值得注意的是,如果可控性纯粹由度决定,那为什么<math>{n_\mathrm{D}}^{real}</math>和<math>{n_\mathrm{D}}^\mathrm{rand\_degree}</math>对于许多现实世界的网络来说是如此不同?对于网络中的控制健壮性是否更多地受到基于度的'''<font color="#FF8000">中介中心性 Betweenness Centrality </font>'''和'''<font color="#FF8000">紧密度中心性 Closeness Centrality </font>'''<ref name = "Arxiv_Close_Betw"/>的影响,仍然是开放的。 | 通过计算各种真实网络的最大匹配,Liu等人<ref name="Liu-Nature-11"/>断言驱动节点的数量主要由网络度分布<math>P(k_\mathrm{in},k_\mathrm{out})</math>决定。他们还使用空腔方法计算了具有任意度分布的网络集合的驱动节点的平均数量。有趣的是,对于'''<font color="#FF8000">链图 Chain Graph </font>'''和'''<font color="#FF8000">弱密集连通图 Weak Densely Connected Graph </font>''',两者都具有非常不同的进出度分布;Liu等人的公式<ref name="Liu-Nature-11"/>将会计算得出出<math>{n_\mathrm{D}}</math>的相同值。此外,对于许多真实世界地网络,即食物网、神经元和代谢网络,Liu等人计算的<math>{n_\mathrm{D}}^{real}</math> 和 <math>{n_\mathrm{D}}^\mathrm{rand\_degree}</math> 值的不匹配<ref name="Liu-Nature-11"/> 。值得注意的是,如果可控性纯粹由度决定,那为什么<math>{n_\mathrm{D}}^{real}</math>和<math>{n_\mathrm{D}}^\mathrm{rand\_degree}</math>对于许多现实世界的网络来说是如此不同?对于网络中的控制健壮性是否更多地受到基于度的'''<font color="#FF8000">中介中心性 Betweenness Centrality </font>'''和'''<font color="#FF8000">紧密度中心性 Closeness Centrality </font>'''<ref name = "Arxiv_Close_Betw"/>的影响,仍然是开放的。 |