更改

跳到导航 跳到搜索
添加577字节 、 2021年7月30日 (五) 22:44
第35行: 第35行:  
在其他问题中,目标是从满足非线性发展方程的概率分布序列生成图。这些概率分布流总是可以解释为马尔可夫过程的随机状态的分布,其转移概率依赖于当前随机状态的分布(见麦肯-弗拉索夫 McKean-Vlasov过程,非线性滤波方程)。在其他情况下,我们给出了采样复杂度不断增加的概率分布流(如时间范围不断增加的路径空间模型,与温度参数降低有联系的'''玻尔兹曼—吉布斯 Boltzmann-Gibbs'''测度,以及许多其他例子)。这些模型也可以看作是一个非线性马尔可夫链的随机状态规律的演化。模拟这些复杂非线性马尔可夫过程的一个自然的方法是对过程的多个副本进行抽样,用抽样的经验测度替代演化方程中未知的随机状态分布。与传统的蒙特卡罗和 MCMC 方法相比,这些平均场粒子技术依赖于连续的相互作用样本。平均场一词反映了每个样本(也就是粒子、个体、步行者、媒介、生物或表现型)与过程的经验测量相互作用的事实。当系统的大小趋近于无穷时,这些随机经验测度收敛于非线性马尔可夫链随机状态的确定性分布,从而使粒子之间的统计相互作用消失。
 
在其他问题中,目标是从满足非线性发展方程的概率分布序列生成图。这些概率分布流总是可以解释为马尔可夫过程的随机状态的分布,其转移概率依赖于当前随机状态的分布(见麦肯-弗拉索夫 McKean-Vlasov过程,非线性滤波方程)。在其他情况下,我们给出了采样复杂度不断增加的概率分布流(如时间范围不断增加的路径空间模型,与温度参数降低有联系的'''玻尔兹曼—吉布斯 Boltzmann-Gibbs'''测度,以及许多其他例子)。这些模型也可以看作是一个非线性马尔可夫链的随机状态规律的演化。模拟这些复杂非线性马尔可夫过程的一个自然的方法是对过程的多个副本进行抽样,用抽样的经验测度替代演化方程中未知的随机状态分布。与传统的蒙特卡罗和 MCMC 方法相比,这些平均场粒子技术依赖于连续的相互作用样本。平均场一词反映了每个样本(也就是粒子、个体、步行者、媒介、生物或表现型)与过程的经验测量相互作用的事实。当系统的大小趋近于无穷时,这些随机经验测度收敛于非线性马尔可夫链随机状态的确定性分布,从而使粒子之间的统计相互作用消失。
   −
缺一段开头Despite
+
Despite its conceptual and algorithmic simplicity, the computational cost associated with a Monte Carlo simulation can be staggeringly high. In general the method requires many samples to get a good approximation, which may incurs an arbitrarily large total runtime if the processing time of a single sample is high. Although this is a severe limitation in very complex problems, the embarrassingly parallel nature of the algorithm allows this large cost to be reduced (perhaps to a feasible level) through parallel computing strategies in local processors, clusters, cloud computing, GPU, FPGA etc.
    
== Overview 概述 ==
 
== Overview 概述 ==
596

个编辑

导航菜单