更改

跳到导航 跳到搜索
添加654字节 、 2021年8月9日 (一) 17:38
第455行: 第455行:  
</ref>
 
</ref>
    +
现有的情感分析的方法主要可以分成三类:基于知识的技术(knowledge-based techniques)、统计方法(statistical methods)和混合方法(hybrid approaches)。<ref name="“Cambria" /> 基于知识的技术根据明确的情感词(如快乐、悲伤、害怕和无聊)的存在对文本进行分类。<ref name="Ortony" /> 一些知识库不仅列出了明显的情感,而且还赋予了任意词汇与特定情感可能的“亲和性”。<ref name="Stevenson" /> 统计方法通过调控机器学习中的元素,比如潜在语意分析(latent semantic analysis),SVM(support vector machines),词袋(bag of words),(Pointwise Mutual Information for Semantic Orientation)和深度学习(depp learning)等等。一些复杂的方法意在检测出情感持有者(比如,保持情绪状态的那个人)和情感目标(比如,让情感持有者产生情绪的实体)。<ref name="Kim+Hovy06" /> 语法依赖关系是通过对文本的深度解析得到的。<ref name="DeyHaque08" /> 与单纯的语义技术不同的是,混合算法的思路利用了知识表达(knowledge representation)的元素,比如知识本体 (ontologies)、语意网络(semantic networks),因此这种算法也可以检测到文字间比较微妙的情感表达。例如, 通过分析一些没有明确表达相关信息的概念与明确概念的隐性的联系来获取所求信息。<ref name="“Hussain" />要想挖掘在某语境下的意见,或是获取被给予意见的某项功能,需要使用到语法之间的关系。语法之间互相的关联性经常需要通过深度解析文本来获取。'''<u>【翻译到这里】</u>'''
         −
  −
现有的情感分析方法可以分为三大类: 基于知识的技术、统计方法和混合方法。基于知识的技术根据明确的情感词汇的出现,如高兴、悲伤、害怕和无聊,按照情感类别对文本进行分类。一些知识库不仅列出了明显的情感词汇,而且还赋予任意的词汇一种可能的特定情感的“亲和力”。统计方法利用机器学习中的元素,例如潜在语义学、支持向量机、“单词包”、语义定位的“点间互信息”和深度学习。更复杂的方法试图检测情绪的持有者(即保持情绪状态的人)和目标(即感受情绪的实体)。为了在上下文中挖掘观点,得到说话人的观点,使用了词语的语法关系。语法依存关系是通过对文本的深入分析得到的。混合方法利用机器学习和来自知识表示的元素,如本体论和语义网络,以便检测以微妙的方式表示的语义,例如,通过分析没有明确传达相关信息,但是隐含链接到这样做的其他概念的概念。
      
Open source software tools as well as range of free and paid sentiment analysis tools deploy [[machine learning]], statistics, and natural language processing techniques to automate sentiment analysis on large collections of texts, including web pages, online news, internet discussion groups, online reviews, web blogs, and social media.有很多开源软件使用机器学习(machine learning)、统计、自然语言处理的技术来计算大型文本集的情感分析, 这些大型文本集合包括网页、网络新闻、网上讨论群、网络评论、博客和社交媒介。<ref name="AkcoraBayirDemirbasFerhatosmanoglu2010">
 
Open source software tools as well as range of free and paid sentiment analysis tools deploy [[machine learning]], statistics, and natural language processing techniques to automate sentiment analysis on large collections of texts, including web pages, online news, internet discussion groups, online reviews, web blogs, and social media.有很多开源软件使用机器学习(machine learning)、统计、自然语言处理的技术来计算大型文本集的情感分析, 这些大型文本集合包括网页、网络新闻、网上讨论群、网络评论、博客和社交媒介。<ref name="AkcoraBayirDemirbasFerhatosmanoglu2010">
54

个编辑

导航菜单