第9行: |
第9行: |
| [[File:Boltzmann distribution graph.svg|upright=1.75|right|thumb|Boltzmann factor ''p<sub>i</sub>'' / ''p<sub>j</sub>'' (vertical axis) as a function of temperature ''T'' for several energy differences ''ε<sub>i</sub>'' − ''ε<sub>j</sub>''.|链接=Special:FilePath/Boltzmann_distribution_graph.svg]] | | [[File:Boltzmann distribution graph.svg|upright=1.75|right|thumb|Boltzmann factor ''p<sub>i</sub>'' / ''p<sub>j</sub>'' (vertical axis) as a function of temperature ''T'' for several energy differences ''ε<sub>i</sub>'' − ''ε<sub>j</sub>''.|链接=Special:FilePath/Boltzmann_distribution_graph.svg]] |
| | | |
− | Boltzmann factor p<sub>i</sub> / p<sub>j</sub> (vertical axis) as a function of temperature T for several energy differences ε<sub>i</sub> − ε<sub>j</sub>.
| |
− |
| |
− | 玻尔兹曼因子 p<sub>i</sub> / p<sub>j</sub> (垂直轴) 作为温度 T 对于几个能量差异ε<sub>i</sub> − ε<sub>j</sub>的函数 。
| |
| | | |
| | | |
第36行: |
第33行: |
| | | |
| {{mvar|p<sub>i</sub>}}是其中系统处于状态{{mvar|i}}的概率, {{mvar|ε<sub>i</sub>}} 是该状态的能量,还有关于这个分布的一个常数{{mvar|kT}} ,它是玻耳兹曼常数{{mvar|k}}和热力学温度 {{mvar|T}}的乘积。符号 < math display = " inline" > propto <nowiki></math ></nowiki> 表示相称性(见附录中的比例常数)。 | | {{mvar|p<sub>i</sub>}}是其中系统处于状态{{mvar|i}}的概率, {{mvar|ε<sub>i</sub>}} 是该状态的能量,还有关于这个分布的一个常数{{mvar|kT}} ,它是玻耳兹曼常数{{mvar|k}}和热力学温度 {{mvar|T}}的乘积。符号 < math display = " inline" > propto <nowiki></math ></nowiki> 表示相称性(见附录中的比例常数)。 |
| + | |
| | | |
| | | |
第43行: |
第41行: |
| The term system here has a very wide meaning; it can range from a single atom to a macroscopic system such as a natural gas storage tank. Because of this the Boltzmann distribution can be used to solve a very wide variety of problems. The distribution shows that states with lower energy will always have a higher probability of being occupied . | | The term system here has a very wide meaning; it can range from a single atom to a macroscopic system such as a natural gas storage tank. Because of this the Boltzmann distribution can be used to solve a very wide variety of problems. The distribution shows that states with lower energy will always have a higher probability of being occupied . |
| | | |
− | 这里的术语系统有非常广泛的含义; 它可以从单个原子到宏观系统,如天然气储罐。正因为如此,波兹曼分布可以用来解决各种各样的问题。分布表明,能量较低的状态被占据的概率总是较高的。
| + | 这里的术语系统含义广泛; 它可以从单个原子到宏观系统,如天然气储罐。正因为如此,波兹曼分布可以用来解决各种各样的问题。玻尔兹曼分布表明,能量较低的状态被占据的概率总是较高的。 |
| | | |
| | | |
第51行: |
第49行: |
| The ratio of probabilities of two states is known as the Boltzmann factor and characteristically only depends on the states' energy difference: | | The ratio of probabilities of two states is known as the Boltzmann factor and characteristically only depends on the states' energy difference: |
| | | |
− | 两种状态的概率之比被称为玻尔兹曼因子,其特点仅取决于两种状态的能量差:
| + | 两种状态的概率之比被称为玻尔兹曼因子,取决于两种状态的能量差: |
| | | |
| | | |
第67行: |
第65行: |
| The Boltzmann distribution is named after Ludwig Boltzmann who first formulated it in 1868 during his studies of the statistical mechanics of gases in thermal equilibrium. Boltzmann's statistical work is borne out in his paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium" | | The Boltzmann distribution is named after Ludwig Boltzmann who first formulated it in 1868 during his studies of the statistical mechanics of gases in thermal equilibrium. Boltzmann's statistical work is borne out in his paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium" |
| | | |
− | 波兹曼分布是根据1868年他在研究统计力学气体在热平衡的时候首次提出的一个公式命名的。波尔兹曼的统计工作在他的论文《论热力学第二基本定理与热平衡条件的概率计算之间的关系》中得到了证实
| + | 波兹曼分布是根据路德维希·玻尔兹曼1868年在研究统计力学中气体热平衡的时候首次提出的一个公式命名的。波尔兹曼的统计工作在他的论文《论热力学第二基本定理与热平衡条件的概率计算之间的关系》中得到了体现。 |
| | | |
| <!-- | | <!-- |
第123行: |
第121行: |
| 这种分布后来在1902年由约西亚·威拉德·吉布斯进行了广泛的调查,以其现代通用形式。 | | 这种分布后来在1902年由约西亚·威拉德·吉布斯进行了广泛的调查,以其现代通用形式。 |
| | | |
− | |location=New York|title-link=Elementary Principles in Statistical Mechanics }}</ref>{{rp|Ch.IV}} | + | |location=New York|title-link=Elementary Principles in Statistical Mechanics }}</ref>{{rp|Ch.IV}}、 |
| + | |
| + | 在玻尔兹曼分布被发明之后,约西亚·华纳德·吉布森充分地研究了它并在1902年提出了它的一般形式。<ref name="gibbs" /> |
| + | |
| | | |
| | | |
第129行: |
第130行: |
| The generalized Boltzmann distribution is a sufficient and necessary condition for the equivalence between the statistical mechanics definition of entropy (The Gibbs entropy formula <math>S = -k_{\mathrm{B}}\sum_i p_i \log p_i</math>) and the thermodynamic definition of entropy (<math>d S = \frac{\delta Q_\text{rev}}{T}</math>, and the fundamental thermodynamic relation). | | The generalized Boltzmann distribution is a sufficient and necessary condition for the equivalence between the statistical mechanics definition of entropy (The Gibbs entropy formula <math>S = -k_{\mathrm{B}}\sum_i p_i \log p_i</math>) and the thermodynamic definition of entropy (<math>d S = \frac{\delta Q_\text{rev}}{T}</math>, and the fundamental thermodynamic relation). |
| | | |
− | 广义波兹曼分布是熵的统计力学定义(吉布斯熵公式 < math > s =-k { mathrm { b } sum i log pi i </math >)与熵的热力学定义(< math > ds = frac { delta q { rev }{ t } </math >)等价的充要条件。
| + | The generalized Boltzmann distribution is a sufficient and necessary condition for the equivalence between the statistical mechanics definition of [[entropy]] (The [[Entropy_(statistical_thermodynamics)#Gibbs_entropy_formula | Gibbs entropy formula]] <math>S = -k_{\mathrm{B}}\sum_i p_i \log p_i</math>) and the thermodynamic definition of entropy (<math>d S = \frac{\delta Q_\text{rev}}{T}</math>, and the [[fundamental thermodynamic relation]]).<ref name=":0">{{cite journal |last1= Gao |first1= Xiang |last2= Gallicchio |first2= Emilio |first3= Adrian |last3= Roitberg |date= 2019 |title= The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy |journal= The Journal of Chemical Physics|volume= 151|issue= 3|pages= 034113|doi= 10.1063/1.5111333|pmid= 31325924 |arxiv= 1903.02121 |s2cid= 118981017 }}</ref> |
| | | |
− | The generalized Boltzmann distribution is a sufficient and necessary condition for the equivalence between the statistical mechanics definition of [[entropy]] (The [[Entropy_(statistical_thermodynamics)#Gibbs_entropy_formula | Gibbs entropy formula]] <math>S = -k_{\mathrm{B}}\sum_i p_i \log p_i</math>) and the thermodynamic definition of entropy (<math>d S = \frac{\delta Q_\text{rev}}{T}</math>, and the [[fundamental thermodynamic relation]]).<ref>{{cite journal |last1= Gao |first1= Xiang |last2= Gallicchio |first2= Emilio |first3= Adrian |last3= Roitberg |date= 2019 |title= The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy |journal= The Journal of Chemical Physics|volume= 151|issue= 3|pages= 034113|doi= 10.1063/1.5111333|pmid= 31325924 |arxiv= 1903.02121 |s2cid= 118981017 }}</ref>
| + | 广义波兹曼分布是熵的统计力学定义(吉布斯熵公式 < math > s =-k { mathrm { b } sum i log pi i <nowiki></math ></nowiki>)与熵的热力学定义(< math > ds = frac { delta q { rev }{ t } <nowiki></math ></nowiki>)等价的充要条件。<ref name=":0" /> |
| | | |
| | | |
第137行: |
第138行: |
| The Boltzmann distribution should not be confused with the Maxwell–Boltzmann distribution. The former gives the probability that a system will be in a certain state as a function of that state's energy; in contrast, the latter is used to describe particle speeds in idealized gases. | | The Boltzmann distribution should not be confused with the Maxwell–Boltzmann distribution. The former gives the probability that a system will be in a certain state as a function of that state's energy; in contrast, the latter is used to describe particle speeds in idealized gases. |
| | | |
− | 波兹曼分布不应与麦克斯韦-波兹曼分布混淆。前者给出了系统处于某种状态的概率,作为该状态能量的函数; 相反,后者用于描述理想气体中的粒子速度。
| + | 值得一提的是,玻尔兹曼分布不应与麦克斯韦-玻尔兹曼分布混淆。前者给出了系统处于某种状态的概率,作为该状态能量的函数; 后者则是用于描述理想气体中的粒子速度。 |
| | | |
| The Boltzmann distribution should not be confused with the [[Maxwell–Boltzmann distribution]]. The former gives the probability that a system will be in a certain state as a function of that state's energy;<ref name="Atkins, P. W. 2010">Atkins, P. W. (2010) Quanta, W. H. Freeman and Company, New York</ref> in contrast, the latter is used to describe particle speeds in idealized gases. | | The Boltzmann distribution should not be confused with the [[Maxwell–Boltzmann distribution]]. The former gives the probability that a system will be in a certain state as a function of that state's energy;<ref name="Atkins, P. W. 2010">Atkins, P. W. (2010) Quanta, W. H. Freeman and Company, New York</ref> in contrast, the latter is used to describe particle speeds in idealized gases. |
第149行: |
第150行: |
| The Boltzmann distribution is a probability distribution that gives the probability of a certain state as a function of that state's energy and temperature of the system to which the distribution is applied. It is given as | | The Boltzmann distribution is a probability distribution that gives the probability of a certain state as a function of that state's energy and temperature of the system to which the distribution is applied. It is given as |
| | | |
− | 波兹曼分布是一个概率分布,它给出了某种状态的概率,作为该状态的能量和温度的函数,该分布适用于系统。它被给出为
| + | 波兹曼分布是一个概率分布,它给出了出于某种能量态处于某种能量和温度的时候的概率。它被给出为 |
| | | |
| The Boltzmann distribution is a [[probability distribution]] that gives the probability of a certain state as a function of that state's energy and temperature of the [[system]] to which the distribution is applied.<ref name="McQuarrie, A. 2000">McQuarrie, A. (2000) Statistical Mechanics, University Science Books, California</ref> It is given as | | The Boltzmann distribution is a [[probability distribution]] that gives the probability of a certain state as a function of that state's energy and temperature of the [[system]] to which the distribution is applied.<ref name="McQuarrie, A. 2000">McQuarrie, A. (2000) Statistical Mechanics, University Science Books, California</ref> It is given as |