第24行: |
第24行: |
| | | |
| The Lorenz equations also arise in simplified models for [[laser]]s,<ref>{{harvtxt|Haken|1975}}</ref> [[electrical generator|dynamos]],<ref>{{harvtxt|Knobloch|1981}}</ref> [[thermosyphon]]s,<ref>{{harvtxt|Gorman|Widmann|Robbins|1986}}</ref> brushless [[DC motor]]s,<ref>{{harvtxt|Hemati|1994}}</ref> [[electric circuit]]s,<ref>{{harvtxt|Cuomo|Oppenheim|1993}}</ref> [[chemical reaction]]s<ref>{{harvtxt|Poland|1993}}</ref> and [[forward osmosis]].<ref>{{harvtxt|Tzenov|2014}}{{citation needed|date=June 2017<!--doesn't point anywhere-->}}</ref> The Lorenz equations are also the governing equations in Fourier space for the [[Malkus waterwheel]].<ref>{{harvtxt|Kolář|Gumbs|1992}}</ref><ref>{{harvtxt|Mishra|Sanghi|2006}}</ref> The Malkus waterwheel exhibits chaotic motion where instead of spinning in one direction at a constant speed, its rotation will speed up, slow down, stop, change directions, and oscillate back and forth between combinations of such behaviors in an unpredictable manner. | | The Lorenz equations also arise in simplified models for [[laser]]s,<ref>{{harvtxt|Haken|1975}}</ref> [[electrical generator|dynamos]],<ref>{{harvtxt|Knobloch|1981}}</ref> [[thermosyphon]]s,<ref>{{harvtxt|Gorman|Widmann|Robbins|1986}}</ref> brushless [[DC motor]]s,<ref>{{harvtxt|Hemati|1994}}</ref> [[electric circuit]]s,<ref>{{harvtxt|Cuomo|Oppenheim|1993}}</ref> [[chemical reaction]]s<ref>{{harvtxt|Poland|1993}}</ref> and [[forward osmosis]].<ref>{{harvtxt|Tzenov|2014}}{{citation needed|date=June 2017<!--doesn't point anywhere-->}}</ref> The Lorenz equations are also the governing equations in Fourier space for the [[Malkus waterwheel]].<ref>{{harvtxt|Kolář|Gumbs|1992}}</ref><ref>{{harvtxt|Mishra|Sanghi|2006}}</ref> The Malkus waterwheel exhibits chaotic motion where instead of spinning in one direction at a constant speed, its rotation will speed up, slow down, stop, change directions, and oscillate back and forth between combinations of such behaviors in an unpredictable manner. |
| + | |
| + | 洛伦兹方程也出现在[[激光]]、<ref>{{harvtxt|Haken|1975}}</ref>[[发电机|dynamos]]、<ref>{{harvtxt|Knobloch|1981}}</ref>[[热虹吸管]]、 <ref>{harvtxt|Gorman|Widmann|Robbins|1986}</ref>无刷[[直流电动机]]、<ref>{harvtxt|Hemati|1994}</ref>[[电路]]、 <ref>{harvtxt|Cuomo|Oppenheim|1993}}</ref>[[化学反应]]、<ref>{harvtxt|Poland|1993}}</ref>和[[正向渗透]] <ref>{{harvtxt|Tzenov|2014}}{{citation needed|date=June 2017<!--doesn't point anywhere-->}}</ref>等其它领域的简化模型中。洛伦兹方程也是[[马尔库斯水车]]在傅里叶空间的控制方程<ref>{{harvtxt|Kolář|Gumbs|1992}}</ref><ref>{{harvtxt|Mishra|Sanghi|2006}}</ref>马尔库斯水车能够表现出混沌运动。它不是以一个恒定的速度朝固定的方向旋转,而是在旋转的过程中经历加速、减速、停止、改变方向等过程。并且这些过程以不可预测的方式在互相转变。 |
| + | |
| | | |
| From a technical standpoint, the Lorenz system is [[nonlinearity|nonlinear]], non-periodic, three-dimensional and [[deterministic system (mathematics)|deterministic]]. The Lorenz equations have been the subject of hundreds of research articles, and at least one book-length study.<ref name="Sparrow 1982"/> | | From a technical standpoint, the Lorenz system is [[nonlinearity|nonlinear]], non-periodic, three-dimensional and [[deterministic system (mathematics)|deterministic]]. The Lorenz equations have been the subject of hundreds of research articles, and at least one book-length study.<ref name="Sparrow 1982"/> |
| | | |
− | ==Analysis== | + | 从技术的角度看,洛伦兹系统是[[非线性|nonlinear]]、非周期性、三维和[[数学上确定的系统|deterministic]]。洛伦兹方程已经作为研究对象被数百篇论文讨论过,其中至少有一篇长篇研究。<ref name="Sparrow 1982"/> |
| + | |
| + | ==分析== |
| One normally assumes that the parameters <math>\sigma</math>, <math>\rho</math>, and <math>\beta</math> are positive. Lorenz used the values <math>\sigma = 10</math>, <math>\beta = 8/3</math> and <math>\rho = 28 </math>. The system exhibits chaotic behavior for these (and nearby) values.<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 303–305</ref> | | One normally assumes that the parameters <math>\sigma</math>, <math>\rho</math>, and <math>\beta</math> are positive. Lorenz used the values <math>\sigma = 10</math>, <math>\beta = 8/3</math> and <math>\rho = 28 </math>. The system exhibits chaotic behavior for these (and nearby) values.<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 303–305</ref> |
| + | |
| + | 通常情况下默认参数<math>\sigma</math>, <math>\rho</math>, and <math>\beta</math>取正值。洛伦兹将这三个参数设定为:<math>\sigma = 10</math>, <math>\beta = 8/3</math> and <math>\rho = 28 </math>。在参数取这些值(或近似值)的时候系统会体现出混沌行为。<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 303–305</ref> |
| | | |
| If <math>\rho < 1</math> then there is only one equilibrium point, which is at the origin. This point corresponds to no convection. All orbits converge to the origin, which is a global [[attractor]], when <math>\rho < 1</math>.<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 306+307</ref> | | If <math>\rho < 1</math> then there is only one equilibrium point, which is at the origin. This point corresponds to no convection. All orbits converge to the origin, which is a global [[attractor]], when <math>\rho < 1</math>.<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 306+307</ref> |
| | | |
− | A [[pitchfork bifurcation]] occurs at <math>\rho = 1</math>, and for <math>\rho > 1 </math> two additional critical points appear at: <math>\left( \sqrt{\beta(\rho-1)}, \sqrt{\beta(\rho-1)}, \rho-1 \right) </math> and <math>\left( -\sqrt{\beta(\rho-1)}, -\sqrt{\beta(\rho-1)}, \rho-1 \right). </math> | + | 如果<math>\rho < 1</math>,在原点只存在一个动态平衡点。这一点与任何对流都不契合。当<math>\rho < 1</math>时,所有的轨道都会收敛于原点,这一原点是全局的[[吸引子]]。<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 306+307</ref> |
− | These correspond to steady convection. This pair of equilibrium points is stable only if | + | |
| + | A [[pitchfork bifurcation]] occurs at <math>\rho = 1</math>, and for <math>\rho > 1 </math> two additional critical points appear at: <math>\left( \sqrt{\beta(\rho-1)}, \sqrt{\beta(\rho-1)}, \rho-1 \right) </math> and <math>\left( -\sqrt{\beta(\rho-1)}, -\sqrt{\beta(\rho-1)}, \rho-1 \right). </math> These correspond to steady convection. |
| + | |
| + | 当<math>\rho = 1</math>会出现一个[[叉式分岔]],而当<math>\rho > 1 </math>两个重要的点将会出现在<math>\left( \sqrt{\beta(\rho-1)}, \sqrt{\beta(\rho-1)}, \rho-1 \right) </math> 和 <math>\left( -\sqrt{\beta(\rho-1)}, -\sqrt{\beta(\rho-1)}, \rho-1 \right)</math> 处。这两点与稳定的对流相契合。 |
| + | |
| + | This pair of equilibrium points is stable only if |
| :<math>\rho < \sigma\frac{\sigma+\beta+3}{\sigma-\beta-1}, </math> | | :<math>\rho < \sigma\frac{\sigma+\beta+3}{\sigma-\beta-1}, </math> |
| which can hold only for positive <math>\rho</math> if <math>\sigma > \beta+1</math>. At the critical value, both equilibrium points lose stability through a subcritical [[Hopf bifurcation]].<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 307+308</ref> | | which can hold only for positive <math>\rho</math> if <math>\sigma > \beta+1</math>. At the critical value, both equilibrium points lose stability through a subcritical [[Hopf bifurcation]].<ref>{{harvtxt|Hirsch|Smale|Devaney|2003}}, pp. 307+308</ref> |
| + | |
| + | 仅当参数满足公式<math>\rho < \sigma\frac{\sigma+\beta+3}{\sigma-\beta-1} </math>时这两个动态平衡点才会达到稳定。当<math>\sigma > \beta+1</math>时<math>\rho</math>需要取正值才能使这两个点稳定。在取临界值时,一个亚临界的[[霍普夫分岔]]会使这两个动态平衡点失去稳定性。 |
| | | |
| When <math>\rho = 28</math>, <math>\sigma = 10</math>, and <math>\beta = 8/3</math>, the Lorenz system has chaotic solutions (but not all solutions are chaotic). Almost all initial points will tend to an invariant set{{snd}}the Lorenz attractor{{snd}}a [[Attractor#Strange attractor|strange attractor]], a [[fractal]], and a [[Hidden attractor#Self-excited attractors|self-excited attractor]] with respect to all three equilibria. Its [[Hausdorff dimension]] is estimated from above by the [[Lyapunov dimension|Lyapunov dimension (Kaplan-Yorke dimension)]] as 2.06 ± 0.01,<ref name=Kuznetsov-2020-ND>{{Cite journal | | | When <math>\rho = 28</math>, <math>\sigma = 10</math>, and <math>\beta = 8/3</math>, the Lorenz system has chaotic solutions (but not all solutions are chaotic). Almost all initial points will tend to an invariant set{{snd}}the Lorenz attractor{{snd}}a [[Attractor#Strange attractor|strange attractor]], a [[fractal]], and a [[Hidden attractor#Self-excited attractors|self-excited attractor]] with respect to all three equilibria. Its [[Hausdorff dimension]] is estimated from above by the [[Lyapunov dimension|Lyapunov dimension (Kaplan-Yorke dimension)]] as 2.06 ± 0.01,<ref name=Kuznetsov-2020-ND>{{Cite journal | |