更改

跳到导航 跳到搜索
添加181字节 、 2021年11月15日 (一) 16:45
无编辑摘要
第44行: 第44行:  
dN是在t时刻,关于(r,p)的微体积元<math> d^3\bf{r}</math>和微动量元<math> \mathrm{d}^3\bf{p}</math>内的分子数目。在位置空间和动量空间的一个区域上积分,得出在该区域中具有位置和动量的粒子总数:
 
dN是在t时刻,关于(r,p)的微体积元<math> d^3\bf{r}</math>和微动量元<math> \mathrm{d}^3\bf{p}</math>内的分子数目。在位置空间和动量空间的一个区域上积分,得出在该区域中具有位置和动量的粒子总数:
    +
<math>N=\int d^{3}\mathbf{p}\int d^{3}\mathbf{r}f(\mathbf{r},\mathbf{p},t)=\iiint\iiint f(x,y,z,p_{x},p_{y},p_{z},t) \text{d}x\,\text{d}y\,\text{d}z\,\text{d}p_x\,\text{d}p_y\,\text{d}p_z</math>
    
which is a [[multiple integral|6-fold integral]]. While ''f'' is associated with a number of particles, the phase space is for one-particle (not all of them, which is usually the case with [[deterministic]] [[many body problem|many-body]] systems), since only one '''r''' and '''p''' is in question. It is not part of the analysis to use '''r'''<sub>1</sub>, '''p'''<sub>1</sub> for particle 1, '''r'''<sub>2</sub>, '''p'''<sub>2</sub> for particle 2, etc. up to '''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub> for particle ''N''.
 
which is a [[multiple integral|6-fold integral]]. While ''f'' is associated with a number of particles, the phase space is for one-particle (not all of them, which is usually the case with [[deterministic]] [[many body problem|many-body]] systems), since only one '''r''' and '''p''' is in question. It is not part of the analysis to use '''r'''<sub>1</sub>, '''p'''<sub>1</sub> for particle 1, '''r'''<sub>2</sub>, '''p'''<sub>2</sub> for particle 2, etc. up to '''r'''<sub>''N''</sub>, '''p'''<sub>''N''</sub> for particle ''N''.
第120行: 第121行:     
is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s.
 
is a shorthand for the momentum analogue of ∇, and '''ê'''<sub>''x''</sub>, '''ê'''<sub>''y''</sub>, '''ê'''<sub>''z''</sub> are [[cartesian coordinates|Cartesian]] [[unit vector]]s.
===Final statement===
+
=== Final statement===
    
Dividing ({{EquationNote|3}}) by ''dt'' and substituting into ({{EquationNote|2}}) gives:
 
Dividing ({{EquationNote|3}}) by ''dt'' and substituting into ({{EquationNote|2}}) gives:
第162行: 第163行:  
1-link = Leif Arkeryd
 
1-link = Leif Arkeryd
   −
=== Two-body collision term ===
+
===Two-body collision term ===
    
  | title= On the Boltzmann equation part II: The full initial value problem | journal= Arch. Rational Mech. Anal. | volume= 45 | issue= 1  
 
  | title= On the Boltzmann equation part II: The full initial value problem | journal= Arch. Rational Mech. Anal. | volume= 45 | issue= 1  
第200行: 第201行:  
类别: 统计力学
 
类别: 统计力学
   −
=== Simplifications to the collision term ===
+
===Simplifications to the collision term===
    
where <math>\nu</math> is the molecular collision frequency, and <math>f_0</math> is the local Maxwellian distribution function given the gas temperature at this point in space.
 
where <math>\nu</math> is the molecular collision frequency, and <math>f_0</math> is the local Maxwellian distribution function given the gas temperature at this point in space.
第218行: 第219行:  
<small>This page was moved from [[wikipedia:en:Boltzmann equation]]. Its edit history can be viewed at [[玻尔兹曼方程/edithistory]]</small></noinclude>
 
<small>This page was moved from [[wikipedia:en:Boltzmann equation]]. Its edit history can be viewed at [[玻尔兹曼方程/edithistory]]</small></noinclude>
   −
== 通用方程(对于混合物) ==
+
==通用方程(对于混合物)==
 
For a mixture of chemical species labelled by indices i = 1, 2, 3, ..., n the equation for species i is  
 
For a mixture of chemical species labelled by indices i = 1, 2, 3, ..., n the equation for species i is  
   −
== 应用与推广 ==
+
==应用与推广==
 
守恒方程
 
守恒方程
   第271行: 第272行:     
20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。
 
20世纪90年代物理宇宙学,完全协变方法被用于研究宇宙微波背景辐射。更一般地说,对早期宇宙过程的研究往往试图考虑量子力学和广义相对论的影响。
== 方程求解 ==
+
==方程求解==
 
this analytical approach provides insight, but is not generally usable in practical problems.
 
this analytical approach provides insight, but is not generally usable in practical problems.
   第284行: 第285行:  
在接近局部均衡的情况下,玻尔兹曼方程的解可以用一个克努森数的渐近展开表示(Chapman-Enskog 展开式)。这个展开式的前两项给出了欧拉方程和纳维-斯托克斯方程。较高的项有奇点。从原子观点(以玻尔兹曼方程为代表)到连续统运动定律的极限过程的数学发展问题,是希尔伯特第六个问题的重要组成部分。
 
在接近局部均衡的情况下,玻尔兹曼方程的解可以用一个克努森数的渐近展开表示(Chapman-Enskog 展开式)。这个展开式的前两项给出了欧拉方程和纳维-斯托克斯方程。较高的项有奇点。从原子观点(以玻尔兹曼方程为代表)到连续统运动定律的极限过程的数学发展问题,是希尔伯特第六个问题的重要组成部分。
   −
== 另见 ==
+
==另见==
   −
== 注释 ==
+
==注释==
 
<references />
 
<references />
   −
== 参考文献 ==
+
==参考文献==
 
[[分类:偏微分方程]]
 
[[分类:偏微分方程]]
 
[[分类:统计力学]]
 
[[分类:统计力学]]
596

个编辑

导航菜单