更改

跳到导航 跳到搜索
添加792字节 、 2021年11月18日 (四) 12:37
无编辑摘要
第177行: 第177行:  
is the magnitude of the relative momenta (see [[relative velocity]] for more on this concept), and ''I''(''g'', Ω) is the [[differential cross section]] of the collision, in which the relative momenta of the colliding particles turns through an angle θ into the element of the [[solid angle]] ''d''Ω, due to the collision.
 
is the magnitude of the relative momenta (see [[relative velocity]] for more on this concept), and ''I''(''g'', Ω) is the [[differential cross section]] of the collision, in which the relative momenta of the colliding particles turns through an angle θ into the element of the [[solid angle]] ''d''Ω, due to the collision.
 
指对应动量的大小(此概念参考[[相對速度|相对速度]]),<math>I(g, \Omega)</math> 是碰撞的[[截面 (物理)|微分散射截面]],其中碰撞粒子的相对动量通过一个角θ变为[[实心角]]''d''Ω的元。
 
指对应动量的大小(此概念参考[[相對速度|相对速度]]),<math>I(g, \Omega)</math> 是碰撞的[[截面 (物理)|微分散射截面]],其中碰撞粒子的相对动量通过一个角θ变为[[实心角]]''d''Ω的元。
  −
   
===Simplifications to the collision term 对碰撞项的简化===
 
===Simplifications to the collision term 对碰撞项的简化===
 
Since much of the challenge in solving the Boltzmann equation originates with the complex collision term, attempts have been made to "model" and simplify the collision term.  The best known model equation is due to Bhatnagar, Gross and Krook.<ref>{{Cite journal|title=A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems|journal=Physical Review|date=1954-05-01|pages=511–525|volume=94|issue=3|doi=10.1103/PhysRev.94.511|first1=P. L.|last1=Bhatnagar|first2=E. P.|last2=Gross|first3=M.|last3=Krook|bibcode=1954PhRv...94..511B}}</ref>  The assumption in the BGK approximation is that the effect of molecular collisions is to force a non-equilibrium distribution function at a point in physical space back to a Maxwellian equilibrium distribution function and that the rate at which this occurs is proportional to the molecular collision frequency.  The Boltzmann equation is therefore modified to the BGK form:
 
Since much of the challenge in solving the Boltzmann equation originates with the complex collision term, attempts have been made to "model" and simplify the collision term.  The best known model equation is due to Bhatnagar, Gross and Krook.<ref>{{Cite journal|title=A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems|journal=Physical Review|date=1954-05-01|pages=511–525|volume=94|issue=3|doi=10.1103/PhysRev.94.511|first1=P. L.|last1=Bhatnagar|first2=E. P.|last2=Gross|first3=M.|last3=Krook|bibcode=1954PhRv...94..511B}}</ref>  The assumption in the BGK approximation is that the effect of molecular collisions is to force a non-equilibrium distribution function at a point in physical space back to a Maxwellian equilibrium distribution function and that the rate at which this occurs is proportional to the molecular collision frequency.  The Boltzmann equation is therefore modified to the BGK form:
第188行: 第186行:  
其中 <math>\nu</math> 是分子碰撞频率,和[[驰豫时间]] <math>\tau</math> 具有倒数关系:<math>\nu = 1/\tau</math>。<math>f_0</math>是此处局域的麦克斯韦分布函数,由空间中这一点的气体温度给定。
 
其中 <math>\nu</math> 是分子碰撞频率,和[[驰豫时间]] <math>\tau</math> 具有倒数关系:<math>\nu = 1/\tau</math>。<math>f_0</math>是此处局域的麦克斯韦分布函数,由空间中这一点的气体温度给定。
   −
==通用方程(对于混合物) ==
+
==通用方程(对于混合物)==
 
For a mixture of chemical species labelled by indices ''i'' = 1, 2, 3, ..., ''n'' the equation for species ''i'' is<ref name="Encyclopaediaof" />  
 
For a mixture of chemical species labelled by indices ''i'' = 1, 2, 3, ..., ''n'' the equation for species ''i'' is<ref name="Encyclopaediaof" />  
对于具有多种化学组分的[[混合物]],我们以 i =1,2,3,……,n 标记各种成分。则对于组分i的方程是:<ref name="Encyclopaediaof"/>
+
对于具有多种化学组分的[[混合物]],我们以 i =1,2,3,……,n 标记各种成分。则对于组分i的方程是:<ref name="Encyclopaediaof" />
    
:<math>\frac{\partial f_i}{\partial t} + \frac{\mathbf{p}_i}{m_i} \cdot \nabla f_i + \mathbf{F} \cdot \frac{\partial f_i}{\partial \mathbf{p}_i} = \left(\frac{\partial f_i}{\partial t} \right)_\text{coll},</math>
 
:<math>\frac{\partial f_i}{\partial t} + \frac{\mathbf{p}_i}{m_i} \cdot \nabla f_i + \mathbf{F} \cdot \frac{\partial f_i}{\partial \mathbf{p}_i} = \left(\frac{\partial f_i}{\partial t} \right)_\text{coll},</math>
第248行: 第246行:  
:<math>\frac{\partial}{\partial t}(\rho V_i) + \frac{\partial}{\partial x_j}(\rho V_i V_j+P_{ij}) - nF_i = 0,</math>
 
:<math>\frac{\partial}{\partial t}(\rho V_i) + \frac{\partial}{\partial x_j}(\rho V_i V_j+P_{ij}) - nF_i = 0,</math>
   −
where  <math>P_{ij} = \rho \langle (w_i-V_i) (w_j-V_j) \rangle</math> is the pressure tensor (the [[wikipedia:Viscous_stress_tensor|viscous stress tensor]] plus the hydrostatic [[wikipedia:Pressure|pressure]]).
+
where  <math>P_{ij} = \rho \langle (w_i-V_i) (w_j-V_j) \rangle</math> is the pressure tensor (the viscous stress tensor plus the hydrostatic pressure).
<math>P_{ij}=\rho\langle (w_i-V_i) (w_j-V_j) \rangle</math> 为压强张量({{le|粘性应力张量|viscous stress tensor}}加上流体静力学[[压强]])。
+
<math>P_{ij}=\rho\langle (w_i-V_i) (w_j-V_j) \rangle</math> 为压强张量(粘性应力张量加上流体静力学压强)。
    
Letting <math>A =\frac{p_i p_i}{2m}</math>, the kinetic energy of the particle, the integrated Boltzmann equation becomes the conservation of energy equation:<ref name="dG1984" />{{rp|pp 19,169}}
 
Letting <math>A =\frac{p_i p_i}{2m}</math>, the kinetic energy of the particle, the integrated Boltzmann equation becomes the conservation of energy equation:<ref name="dG1984" />{{rp|pp 19,169}}
第261行: 第259行:  
===Hamiltonian mechanics 哈密顿力学===
 
===Hamiltonian mechanics 哈密顿力学===
 
In [[wikipedia:Hamiltonian_mechanics|Hamiltonian mechanics]], the Boltzmann equation is often written more generally as
 
In [[wikipedia:Hamiltonian_mechanics|Hamiltonian mechanics]], the Boltzmann equation is often written more generally as
 +
在[[哈密顿力学]]中, 玻尔兹曼方程通常写作
    
:<math>\hat{\mathbf{L}}[f]=\mathbf{C}[f], \, </math>
 
:<math>\hat{\mathbf{L}}[f]=\mathbf{C}[f], \, </math>
    
where '''L''' is the [[wikipedia:Liouville_operator|Liouville operator]] (there is an inconsistent definition between the Liouville operator as defined here and the one in the article linked) describing the evolution of a phase space volume and '''C''' is the collision operator. The non-relativistic form of '''L''' is
 
where '''L''' is the [[wikipedia:Liouville_operator|Liouville operator]] (there is an inconsistent definition between the Liouville operator as defined here and the one in the article linked) describing the evolution of a phase space volume and '''C''' is the collision operator. The non-relativistic form of '''L''' is
 +
其中 '''L''' 是[[刘维尔定理 (哈密顿力学)|刘维尔算子]](这里定义的刘维尔算子和链接文章中的定义不一致),它描述了相空间体积的演化;'''C''' 是碰撞算子。非相对论下的'''L''' 写作
    
:<math>\hat{\mathbf{L}}_\mathrm{NR} = \frac{\partial}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla + \mathbf{F}\cdot\frac{\partial}{\partial \mathbf{p}}\,.</math>
 
:<math>\hat{\mathbf{L}}_\mathrm{NR} = \frac{\partial}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla + \mathbf{F}\cdot\frac{\partial}{\partial \mathbf{p}}\,.</math>
   −
=== Quantum theory and violation of particle number conservation ===
+
===Quantum theory and violation of particle number conservation 量子理论与粒子数守恒的违背===
 
It is possible to write down relativistic [[wikipedia:Quantum_Boltzmann_equation|quantum Boltzmann equations]] for [[wikipedia:Quantum_field_theory|relativistic]] quantum systems in which the number of particles is not conserved in collisions. This has several applications in [[wikipedia:Physical_cosmology|physical cosmology]],<ref name="KolbTurner">{{cite book|author1=Edward Kolb|author2=Michael Turner|name-list-style=amp|title=The Early Universe|year=1990|publisher=Westview Press|isbn=9780201626742}}</ref> including the formation of the light elements in [[wikipedia:Big_Bang_nucleosynthesis|Big Bang nucleosynthesis]], the production of [[wikipedia:Dark_matter|dark matter]] and [[wikipedia:Baryogenesis|baryogenesis]]. It is not a priori clear that the state of a quantum system can be characterized by a classical phase space density ''f''. However, for a wide class of applications a well-defined generalization of ''f'' exists which is the solution of an effective Boltzmann equation that can be derived from first principles of [[wikipedia:Quantum_field_theory|quantum field theory]].<ref name="BEfromQFT">{{cite journal|author1=M. Drewes|author2=C. Weniger|author3=S. Mendizabal|journal=Phys. Lett. B|date=8 January 2013|volume=718|issue=3|pages=1119–1124|doi=10.1016/j.physletb.2012.11.046|arxiv=1202.1301|bibcode=2013PhLB..718.1119D|title=The Boltzmann equation from quantum field theory|s2cid=119253828}}</ref>
 
It is possible to write down relativistic [[wikipedia:Quantum_Boltzmann_equation|quantum Boltzmann equations]] for [[wikipedia:Quantum_field_theory|relativistic]] quantum systems in which the number of particles is not conserved in collisions. This has several applications in [[wikipedia:Physical_cosmology|physical cosmology]],<ref name="KolbTurner">{{cite book|author1=Edward Kolb|author2=Michael Turner|name-list-style=amp|title=The Early Universe|year=1990|publisher=Westview Press|isbn=9780201626742}}</ref> including the formation of the light elements in [[wikipedia:Big_Bang_nucleosynthesis|Big Bang nucleosynthesis]], the production of [[wikipedia:Dark_matter|dark matter]] and [[wikipedia:Baryogenesis|baryogenesis]]. It is not a priori clear that the state of a quantum system can be characterized by a classical phase space density ''f''. However, for a wide class of applications a well-defined generalization of ''f'' exists which is the solution of an effective Boltzmann equation that can be derived from first principles of [[wikipedia:Quantum_field_theory|quantum field theory]].<ref name="BEfromQFT">{{cite journal|author1=M. Drewes|author2=C. Weniger|author3=S. Mendizabal|journal=Phys. Lett. B|date=8 January 2013|volume=718|issue=3|pages=1119–1124|doi=10.1016/j.physletb.2012.11.046|arxiv=1202.1301|bibcode=2013PhLB..718.1119D|title=The Boltzmann equation from quantum field theory|s2cid=119253828}}</ref>
   −
=== General relativity and astronomy===
+
对于碰撞中粒子数不守恒的相对论量子系统,给出相对论量子玻尔兹曼方程是可能的。这在物理宇宙学中有一些应用<ref name="KolbTurner" />,包括大爆炸核合成中轻元素的形成,暗物质的产生和重子发生。我们并不预先知道量子系统的状态可以用经典相空间密度''f''来表征。然而,对于许多应用来说,定义良好的''f''作为有效玻尔兹曼方程的解是存在的,可以由[[wikipedia:Quantum_field_theory|量子场论]]的第一原理推导得出。
 +
 
 +
===General relativity and astronomy===
 
The Boltzmann equation is of use in galactic dynamics. A galaxy, under certain assumptions, may be approximated as a continuous fluid; its mass distribution is then represented by ''f''; in galaxies, physical collisions between the stars are very rare, and the effect of ''gravitational collisions'' can be neglected for times far longer than the [[wikipedia:Age_of_the_universe|age of the universe]].
 
The Boltzmann equation is of use in galactic dynamics. A galaxy, under certain assumptions, may be approximated as a continuous fluid; its mass distribution is then represented by ''f''; in galaxies, physical collisions between the stars are very rare, and the effect of ''gravitational collisions'' can be neglected for times far longer than the [[wikipedia:Age_of_the_universe|age of the universe]].
   第295行: 第297行:  
在接近局部均衡的情况下,玻尔兹曼方程的解可以用一个克努森数的渐近展开表示(Chapman-Enskog 展开式)。这个展开式的前两项给出了欧拉方程和纳维-斯托克斯方程。较高的项有奇点。从原子观点(以玻尔兹曼方程为代表)到连续统运动定律的极限过程的数学发展问题,是希尔伯特第六个问题的重要组成部分。
 
在接近局部均衡的情况下,玻尔兹曼方程的解可以用一个克努森数的渐近展开表示(Chapman-Enskog 展开式)。这个展开式的前两项给出了欧拉方程和纳维-斯托克斯方程。较高的项有奇点。从原子观点(以玻尔兹曼方程为代表)到连续统运动定律的极限过程的数学发展问题,是希尔伯特第六个问题的重要组成部分。
   −
==另见 ==
+
==另见==
 
{{Div col|colwidth=20em}}
 
{{Div col|colwidth=20em}}
 
* [[Vlasov equation]]
 
* [[Vlasov equation]]
596

个编辑

导航菜单