更改

跳到导航 跳到搜索
添加74字节 、 2021年11月18日 (四) 14:49
无编辑摘要
第14行: 第14行:  
The Boltzmann equation can be used to determine how physical quantities change, such as [[heat]] energy and [[momentum]], when a fluid is in transport. One may also derive other properties characteristic to fluids such as [[viscosity]], [[thermal conductivity]], and [[electrical conductivity]] (by treating the charge carriers in a material as a gas).<ref name="Encyclopaediaof" /> See also [[convection–diffusion equation]].
 
The Boltzmann equation can be used to determine how physical quantities change, such as [[heat]] energy and [[momentum]], when a fluid is in transport. One may also derive other properties characteristic to fluids such as [[viscosity]], [[thermal conductivity]], and [[electrical conductivity]] (by treating the charge carriers in a material as a gas).<ref name="Encyclopaediaof" /> See also [[convection–diffusion equation]].
   −
在流体运输过程中,玻尔兹曼方程可以用来确定物理量如何变化,比如热能和动量。人们还可以推导出流体的其他特性,如粘度、热导率和电导率(通过将材料中的载流子当作气体来处理)。<ref name="Encyclopaediaof" /> 参见[[对流扩散方程]]。
+
在流体运输过程中,玻尔兹曼方程可以用来确定物理量如何变化,比如热能和动量。人们还可以推导出流体的其他特性,如粘度、热导率和电导率(通过将材料中的载流子当作气体来处理)。<ref name="Encyclopaediaof" /> 参见[[wikipedia:convection–diffusion equation|对流扩散方程 Convection–Diffusion Equation]]。
    
The equation is a [[Nonlinear system|nonlinear]] [[integro-differential equation]], and the unknown function in the equation is a probability density function in six-dimensional space of a particle position and momentum. The problem of existence and uniqueness of solutions is still not fully resolved, but some recent results are quite promising.<ref name=":0">DiPerna, R. J.; Lions, P.-L. (1989). "On the Cauchy problem for Boltzmann equations: global existence and weak stability". ''Ann. of Math''. 2. '''130''' (2): 321–366. doi:10.2307/1971423. JSTOR 1971423.
 
The equation is a [[Nonlinear system|nonlinear]] [[integro-differential equation]], and the unknown function in the equation is a probability density function in six-dimensional space of a particle position and momentum. The problem of existence and uniqueness of solutions is still not fully resolved, but some recent results are quite promising.<ref name=":0">DiPerna, R. J.; Lions, P.-L. (1989). "On the Cauchy problem for Boltzmann equations: global existence and weak stability". ''Ann. of Math''. 2. '''130''' (2): 321–366. doi:10.2307/1971423. JSTOR 1971423.
596

个编辑

导航菜单