更改

跳到导航 跳到搜索
添加1,018字节 、 2021年12月1日 (三) 15:52
第122行: 第122行:  
^{1/\beta}</math> of degree <math>\beta \delta\ .</math>  The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although ({{EquationNote|7}}) is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math>
 
^{1/\beta}</math> of degree <math>\beta \delta\ .</math>  The scaling function <math>j(x)</math> vanishes proportionally to <math>x+b</math> as <math>x</math> approaches <math>-b\ ,</math> with <math>b</math> a positive constant; it diverges proportionally to <math>x^{\beta(\delta-1)}</math> as <math>x\rightarrow \infty\ ;</math> and <math>j(0) = c\ ,</math> another positive constant (Fig. 1). Although ({{EquationNote|7}}) is confined to the immediate neighborhood of the critical point <math>(t, M, H</math> all near 0), the scaling variable <math>x = t/\mid M\mid ^{1/\beta}</math> nevertheless traverses the infinite range <math>-b < x < \infty\ .</math>
   −
其中<math>j(x)</math>是“标度”函数,<math>\beta</math>和<math>\delta</math>是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时<math>(H\rightarrow 0</math>且<math>t\rightarrow 0)\ ,</math>,<math>\mid H\mid</math>是<math>t</math>和<math>\mid M\mid
+
其中<math>j(x)</math>是“标度”函数,<math>\beta</math>和<math>\delta</math>是临界点指数。因此由({{EquationNote|2}})和({{EquationNote|7}}),当铁磁物质趋近于临界点时<math>(H\rightarrow 0</math>且<math>t\rightarrow 0)\ ,</math>,<math>\mid H\mid</math>是 <math> t </math> 和<math>\mid M\mid
 
^{1/\beta}</math>的<math>\beta \delta\ </math>次齐次函数。当<math>x</math>趋近于<math>-b\</math>(正常数)时,标度函数<math>j(x)</math>趋近于零;当<math>x\rightarrow \infty\ ;</math>时,它发散至<math>x^{\beta(\delta-1)}</math>,且<math>j(0) = c\ </math>(正常数)(如图一)。尽管({{EquationNote|7}})局限在临界点<math>(t, M, H</math>都接近零)附近的极小范围内,但标度变量<math>x = t/\mid M\mid ^{1/\beta}</math>却遍历<math>-b < x < \infty\</math>的无穷范围。
 
^{1/\beta}</math>的<math>\beta \delta\ </math>次齐次函数。当<math>x</math>趋近于<math>-b\</math>(正常数)时,标度函数<math>j(x)</math>趋近于零;当<math>x\rightarrow \infty\ ;</math>时,它发散至<math>x^{\beta(\delta-1)}</math>,且<math>j(0) = c\ </math>(正常数)(如图一)。尽管({{EquationNote|7}})局限在临界点<math>(t, M, H</math>都接近零)附近的极小范围内,但标度变量<math>x = t/\mid M\mid ^{1/\beta}</math>却遍历<math>-b < x < \infty\</math>的无穷范围。
   第138行: 第138行:  
\gamma =
 
\gamma =
 
\beta(\delta-1).  </math>
 
\beta(\delta-1).  </math>
{{NumBlk|:|<math>\gamma =
+
Equations ({{EquationNote|7}}) and
 +
({{EquationNote|8}}) are examples of scaling laws, Eq.({{EquationNote|7}}) being a statement of homogeneity and the exponent relation ({{EquationNote|8}}) a consequence of that homogeneity.
 +
 
 +
当<math>\mid H\mid = 0+</math>且<math>t<0\ ,</math><math>M</math>是自发磁化,从({{EquationNote|7}})可得<math>\mid M\mid = (-\frac{t}{b})^\beta\ ,</math>其中<math>\beta</math>是这一临界指数的常用符号。在临界等温线<math>(t=0)\ ,</math>当<math>M\rightarrow 0</math>时,我们有<math>H \sim cM\mid
 +
M\mid ^{\delta-1}\ ,</math>其中<math>\delta</math>是这一临界指数的常用符号。由前文中<math>j(x)</math>的第一个性质和式({{EquationNote|7}}),或可以计算磁化率<math>(\partial
 +
M/\partial H)_T\ ,</math>,它在<math>\mid
 +
H\mid = 0+</math>且<math>t<0</math>以及在<math>H=0</math>且<math>t>0</math>时成比例发散至<math>\mid t\mid ^{-\beta(\delta-1)}\</math>(尽管系数不同)。磁化率指数的常用符号是<math>\gamma\ ,</math>因此有{{NumBlk|:|<math>\gamma =
 
\beta(\delta-1). </math>|{{EquationRef|8}}}}
 
\beta(\delta-1). </math>|{{EquationRef|8}}}}
   −
Equations ({{EquationNote|7}}) and
+
方程({{EquationNote|7}})({{EquationNote|8}})都是标度律的范例,({{EquationNote|7}})是齐次性的表述,({{EquationNote|8}})作为指数关系式则是这种齐次性的结果。
({{EquationNote|8}}) are examples of scaling laws, Eq.({{EquationNote|7}}) being a statement of homogeneity and the exponent relation ({{EquationNote|8}}) a consequence of that homogeneity.
      
A free energy <math>F</math> may be obtained from ({{EquationNote|7}}) by integrating at fixed temperature, since <math>M = -(\partial
 
A free energy <math>F</math> may be obtained from ({{EquationNote|7}}) by integrating at fixed temperature, since <math>M = -(\partial
596

个编辑

导航菜单