{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}}When <math>2\beta+\gamma=2</math> the resulting <math>\alpha =0</math> means, generally, a logarithmic rather than power-law divergence together with a superimposed finite discontinuity occurring between <math>t=0+</math> and <math>t=0-</math> [4]. In the 2-dimensional Ising model the discontinuity is absent and only the logarithm remains, while in mean-field (van der Waals, Curie-Weiss, Bragg-Williams) approximation the logarithm is absent but the
0+)\ </math>各有不同的系数),临界点指数<math>\alpha</math>与<math>\beta</math>和<math>\gamma</math>满足以下标度律:{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}}When <math>2\beta+\gamma=2</math> the resulting <math>\alpha =0</math> means, generally, a logarithmic rather than power-law divergence together with a superimposed finite discontinuity occurring between <math>t=0+</math> and <math>t=0-</math> [4]. In the 2-dimensional Ising model the discontinuity is absent and only the logarithm remains, while in mean-field (van der Waals, Curie-Weiss, Bragg-Williams) approximation the logarithm is absent but the discontinuity is still present.