第14行: |
第14行: |
| * '''[http://bayes.cs.ucla.edu/BOOK-2K/ 在线网站]''' 含有习题、勘误、问题讨论等资源 | | * '''[http://bayes.cs.ucla.edu/BOOK-2K/ 在线网站]''' 含有习题、勘误、问题讨论等资源 |
| | | |
− | == 书籍目录 == | + | == 目录与概要 == |
| '''<big>1 概率、图和因果模型介绍 Introduction to Probabilities, Graphs, and Causal Models 1</big>''' | | '''<big>1 概率、图和因果模型介绍 Introduction to Probabilities, Graphs, and Causal Models 1</big>''' |
| | | |
第21行: |
第21行: |
| 1.1.1 为什么需要概率 Why Probabilities? 1 | | 1.1.1 为什么需要概率 Why Probabilities? 1 |
| | | |
− | 1.1.2 概率论的一些基本概念 Basic Concepts in Probability Theory 2 | + | * 因果论断的发生具有不确定性,比如“心不在焉的开车会导致车祸”,前因会让后果更容易发生,但不是绝对的。 |
| + | * 与断言逻辑相比,基于概率的表达更容易处理,不然断言需要考虑到大量使其不成立的特例。 |
| + | |
| + | 1.1.2 概率论中的基本概念 Basic Concepts in Probability Theory 2 |
| + | |
| + | * 介绍有关概率论中离散变量的相关基础知识,并聚焦于贝叶斯推理的角度。 |
| | | |
| 1.1.3 Combining Predictive and Diagnostic Supports 6 | | 1.1.3 Combining Predictive and Diagnostic Supports 6 |
第27行: |
第32行: |
| 1.1.4 随机变量与数学期望 Random Variables and Expectations 8 | | 1.1.4 随机变量与数学期望 Random Variables and Expectations 8 |
| | | |
− | 1.1.5 条件独立与Conditional Independence and Graphoids 11 | + | 1.1.5 条件独立与Graphoid Conditional Independence and Graphoids 11 |
| | | |
| '''1.2 图和概率 Graphs and Probabilities 12''' | | '''1.2 图和概率 Graphs and Probabilities 12''' |
| | | |
− | 1.2.1 Graphical Notation and Terminology 12 | + | 1.2.1 图的记号与术语 Graphical Notation and Terminology 12 |
| | | |
− | 1.2.2 Bayesian Networks 13 | + | 1.2.2 贝叶斯网络 Bayesian Networks 13 |
| | | |
− | 1.2.3 The d-Separation Criterion 16 | + | 1.2.3 d-分离准则 The d-Separation Criterion 16 |
| | | |
− | 1.2.4 Inference with Bayesian Networks 20 | + | 1.2.4 贝叶斯网络推断 Inference with Bayesian Networks 20 |
| | | |
− | '''1.3 Causal Bayesian Networks 21''' | + | '''1.3 因果贝叶斯网络 Causal Bayesian Networks 21''' |
| | | |
| 1.3.1 Causal Networks as Oracles for Interventions 22 | | 1.3.1 Causal Networks as Oracles for Interventions 22 |
第59行: |
第64行: |
| '''<big>2 推断因果理论 A Theory of Inferred Causation 41</big>''' | | '''<big>2 推断因果理论 A Theory of Inferred Causation 41</big>''' |
| | | |
− | '''2.1 Introduction – The Basic Intuitions 42''' | + | '''2.1 介绍—基本的直觉 Introduction – The Basic Intuitions 42''' |
| | | |
− | '''2.2 The Causal Discovery Framework 43''' | + | '''2.2 因果发现框架 The Causal Discovery Framework 43''' |
| | | |
− | '''2.3 Model Preference (Occam’s Razor) 45''' | + | '''2.3 模型偏好(奥卡姆剃刀) Model Preference (Occam's Razor) 45''' |
| | | |
− | '''2.4 Stable Distributions 48''' | + | '''2.4 稳定分布 Stable Distributions 48''' |
| | | |
− | '''2.5 Recovering DAG Structures 49''' | + | '''2.5 发现DAG结构 Recovering DAG Structures 49''' |
| | | |
− | '''2.6 Recovering Latent Structures 51''' | + | '''2.6 滞后结构再发现 Recovering Latent Structures 51''' |
| | | |
− | '''2.7 Local Criteria for Inferring Causal Relations 54''' | + | '''2.7 因果关系推断的局部准则 Local Criteria for Inferring Causal Relations 54''' |
| | | |
| '''2.8 Nontemporal Causation and Statistical Time 57''' | | '''2.8 Nontemporal Causation and Statistical Time 57''' |
| | | |
− | '''2.9 Conclusions 59''' | + | '''2.9 总结 Conclusions 59''' |
| | | |
| 2.9.1 On Minimality, Markov, and Stability 61 | | 2.9.1 On Minimality, Markov, and Stability 61 |
第469行: |
第474行: |
| '''11.6 Decisions and Confounding (Chapter 6) 380''' | | '''11.6 Decisions and Confounding (Chapter 6) 380''' |
| | | |
− | 11.6.1 Simpson’s Paradox and Decision Trees 380 | + | 11.6.1 Simpson's Paradox and Decision Trees 380 |
| | | |
| 11.6.2 Is Chronological Information Sufficient for Decision Trees? 382 | | 11.6.2 Is Chronological Information Sufficient for Decision Trees? 382 |
第475行: |
第480行: |
| 11.6.3 Lindley on Causality, Decision Trees, and Bayesianism 384 | | 11.6.3 Lindley on Causality, Decision Trees, and Bayesianism 384 |
| | | |
− | 11.6.4 Why Isn’t Confounding a Statistical Concept? 387 | + | 11.6.4 Why Isn't Confounding a Statistical Concept? 387 |
| | | |
| '''11.7 The Calculus of Counterfactuals 389''' | | '''11.7 The Calculus of Counterfactuals 389''' |
第491行: |
第496行: |
| '''11.9 More on Probabilities of Causation 396''' | | '''11.9 More on Probabilities of Causation 396''' |
| | | |
− | 11.9.1 Is “Guilty with Probability One” Ever Possible? 396 | + | 11.9.1 Is "Guilty with Probability One" Ever Possible? 396 |
| | | |
| 11.9.2 Tightening the Bounds on Probabilities of Causation 398 | | 11.9.2 Tightening the Bounds on Probabilities of Causation 398 |
− |
| |
− | == 各章概要 ==
| |
− |
| |
− | ==='''概率、图和因果模型介绍'''===
| |