更改

跳到导航 跳到搜索
1.1.1和1.1.2,感觉找到处理这种任务的想法了
第14行: 第14行:  
* '''[http://bayes.cs.ucla.edu/BOOK-2K/ 在线网站]'''  含有习题、勘误、问题讨论等资源
 
* '''[http://bayes.cs.ucla.edu/BOOK-2K/ 在线网站]'''  含有习题、勘误、问题讨论等资源
   −
== 书籍目录 ==
+
== 目录与概要 ==
 
'''<big>1 概率、图和因果模型介绍  Introduction to Probabilities, Graphs, and Causal Models 1</big>'''
 
'''<big>1 概率、图和因果模型介绍  Introduction to Probabilities, Graphs, and Causal Models 1</big>'''
   第21行: 第21行:  
1.1.1 为什么需要概率  Why Probabilities? 1
 
1.1.1 为什么需要概率  Why Probabilities? 1
   −
1.1.2 概率论的一些基本概念 Basic Concepts in Probability Theory 2
+
* 因果论断的发生具有不确定性,比如“心不在焉的开车会导致车祸”,前因会让后果更容易发生,但不是绝对的。
 +
* 与断言逻辑相比,基于概率的表达更容易处理,不然断言需要考虑到大量使其不成立的特例。
 +
 
 +
1.1.2 概率论中的基本概念 Basic Concepts in Probability Theory 2
 +
 
 +
* 介绍有关概率论中离散变量的相关基础知识,并聚焦于贝叶斯推理的角度。
    
1.1.3 Combining Predictive and Diagnostic Supports 6
 
1.1.3 Combining Predictive and Diagnostic Supports 6
第27行: 第32行:  
1.1.4 随机变量与数学期望  Random Variables and Expectations 8  
 
1.1.4 随机变量与数学期望  Random Variables and Expectations 8  
   −
1.1.5 条件独立与Conditional Independence and Graphoids 11
+
1.1.5 条件独立与Graphoid  Conditional Independence and Graphoids 11
    
'''1.2 图和概率  Graphs and Probabilities 12'''
 
'''1.2 图和概率  Graphs and Probabilities 12'''
   −
1.2.1 Graphical Notation and Terminology 12
+
1.2.1 图的记号与术语  Graphical Notation and Terminology 12
   −
1.2.2 Bayesian Networks 13
+
1.2.2 贝叶斯网络  Bayesian Networks 13
   −
1.2.3 The d-Separation Criterion 16
+
1.2.3 d-分离准则  The d-Separation Criterion 16
   −
1.2.4 Inference with Bayesian Networks 20
+
1.2.4 贝叶斯网络推断  Inference with Bayesian Networks 20
   −
'''1.3 Causal Bayesian Networks 21'''
+
'''1.3 因果贝叶斯网络  Causal Bayesian Networks 21'''
    
1.3.1 Causal Networks as Oracles for Interventions 22
 
1.3.1 Causal Networks as Oracles for Interventions 22
第59行: 第64行:  
'''<big>2 推断因果理论  A Theory of Inferred Causation 41</big>'''
 
'''<big>2 推断因果理论  A Theory of Inferred Causation 41</big>'''
   −
'''2.1 Introduction – The Basic Intuitions 42'''
+
'''2.1 介绍—基本的直觉  Introduction – The Basic Intuitions 42'''
   −
'''2.2 The Causal Discovery Framework 43'''
+
'''2.2 因果发现框架  The Causal Discovery Framework 43'''
   −
'''2.3 Model Preference (Occam’s Razor) 45'''
+
'''2.3 模型偏好(奥卡姆剃刀)  Model Preference (Occam's Razor) 45'''
   −
'''2.4 Stable Distributions 48'''
+
'''2.4 稳定分布  Stable Distributions 48'''
   −
'''2.5 Recovering DAG Structures 49'''
+
'''2.5 发现DAG结构  Recovering DAG Structures 49'''
   −
'''2.6 Recovering Latent Structures 51'''
+
'''2.6 滞后结构再发现  Recovering Latent Structures 51'''
   −
'''2.7 Local Criteria for Inferring Causal Relations 54'''
+
'''2.7 因果关系推断的局部准则  Local Criteria for Inferring Causal Relations 54'''
    
'''2.8 Nontemporal Causation and Statistical Time 57'''
 
'''2.8 Nontemporal Causation and Statistical Time 57'''
   −
'''2.9 Conclusions 59'''
+
'''2.9 总结  Conclusions 59'''
    
2.9.1 On Minimality, Markov, and Stability 61
 
2.9.1 On Minimality, Markov, and Stability 61
第469行: 第474行:  
'''11.6 Decisions and Confounding (Chapter 6)  380'''
 
'''11.6 Decisions and Confounding (Chapter 6)  380'''
   −
11.6.1 Simpson’s Paradox and Decision Trees  380
+
11.6.1 Simpson's Paradox and Decision Trees  380
    
11.6.2 Is Chronological Information Sufficient for Decision Trees?  382
 
11.6.2 Is Chronological Information Sufficient for Decision Trees?  382
第475行: 第480行:  
11.6.3 Lindley on Causality, Decision Trees, and Bayesianism  384
 
11.6.3 Lindley on Causality, Decision Trees, and Bayesianism  384
   −
11.6.4 Why Isn’t Confounding a Statistical Concept?  387
+
11.6.4 Why Isn't Confounding a Statistical Concept?  387
    
'''11.7 The Calculus of Counterfactuals  389'''
 
'''11.7 The Calculus of Counterfactuals  389'''
第491行: 第496行:  
'''11.9 More on Probabilities of Causation  396'''
 
'''11.9 More on Probabilities of Causation  396'''
   −
11.9.1 Is “Guilty with Probability One” Ever Possible?  396
+
11.9.1 Is "Guilty with Probability One" Ever Possible?  396
    
11.9.2 Tightening the Bounds on Probabilities of Causation  398
 
11.9.2 Tightening the Bounds on Probabilities of Causation  398
  −
== 各章概要 ==
  −
  −
==='''概率、图和因果模型介绍'''===
 
134

个编辑

导航菜单