图3中左图:在这个简单的势垒跳跃模型中,一个经历热波动的粒子位于一个受驱动的能量景观中,因此右边的状态和过渡状态的能量以正弦的方式随着时间同步振荡(最大值和最小值显示为黄色)。中间:当驱动引起的势垒高度的振荡暂时降低了跃迁的活化能时,粒子最有可能跃迁。右:这个系统的驱动被设计成使向左跳跃的障碍高度随时间固定,这意味着驱动优先加速向右跳跃。这种统计不可逆性立即意味着,在典型的向右跳跃时刻,右侧状态的能量将低于左侧状态,因此正热量被散发到周围的热源中(ΔQ >0).因此,不可逆性和散热是齐头并进的。 | 图3中左图:在这个简单的势垒跳跃模型中,一个经历热波动的粒子位于一个受驱动的能量景观中,因此右边的状态和过渡状态的能量以正弦的方式随着时间同步振荡(最大值和最小值显示为黄色)。中间:当驱动引起的势垒高度的振荡暂时降低了跃迁的活化能时,粒子最有可能跃迁。右:这个系统的驱动被设计成使向左跳跃的障碍高度随时间固定,这意味着驱动优先加速向右跳跃。这种统计不可逆性立即意味着,在典型的向右跳跃时刻,右侧状态的能量将低于左侧状态,因此正热量被散发到周围的热源中(ΔQ >0).因此,不可逆性和散热是齐头并进的。 |