更改

跳到导航 跳到搜索
添加2,181字节 、 2022年6月20日 (一) 20:54
无编辑摘要
第182行: 第182行:     
== 编者推荐 ==
 
== 编者推荐 ==
'''集智俱乐部文章'''
      +
=== '''集智俱乐部文章''' ===
 
[https://mp.weixin.qq.com/s/vFDu-g2qy-sUfIl8EhrMJg Donald Rubin的因果推断学术贡献:超出统计学范畴的划时代影响]
 
[https://mp.weixin.qq.com/s/vFDu-g2qy-sUfIl8EhrMJg Donald Rubin的因果推断学术贡献:超出统计学范畴的划时代影响]
   第190行: 第190行:  
[https://swarma.org/?p=24656 两套因果框架深度剖析:潜在结果模型与结构因果模型 | 因果科学读书会 | 集智俱乐部 (swarma.org)]
 
[https://swarma.org/?p=24656 两套因果框架深度剖析:潜在结果模型与结构因果模型 | 因果科学读书会 | 集智俱乐部 (swarma.org)]
   −
'''集智课程'''
+
=== '''集智课程''' ===
 
   
[https://campus.swarma.org/course/3527 因果科学读书会第三季:因果+X (swarma.org)]
 
[https://campus.swarma.org/course/3527 因果科学读书会第三季:因果+X (swarma.org)]
   第198行: 第197行:  
“因果+X”就是要让因果真正地应用于我们的科学研究中,不管你是来自计算机、数理统计领域,还是社会学、经济学、管理学领域,还是医学、生物学领域,我们希望共同探究出因果研究的范式,真正解决因果的多学科应用问题,乃至解决工业界的问题。
 
“因果+X”就是要让因果真正地应用于我们的科学研究中,不管你是来自计算机、数理统计领域,还是社会学、经济学、管理学领域,还是医学、生物学领域,我们希望共同探究出因果研究的范式,真正解决因果的多学科应用问题,乃至解决工业界的问题。
    +
 +
[https://campus.swarma.org/course/2526 两套因果框架深度剖析:潜在结果模型与结构因果模型]
 +
 +
这个视频内容来自[https://wiki.swarma.org/index.php%3Ftitle=%E9%9B%86%E6%99%BA%E4%BF%B1%E4%B9%90%E9%83%A8%E8%AF%BB%E4%B9%A6%E4%BC%9A 集智俱乐部读书会]-因果科学与Causal AI读书会第二季内容的分享,由英国剑桥大学及其学习组博士陆超超详细的阐述了潜在结果模型和结果因果模型,并介绍了两个框架的相互转化规律。讲述因果推断的两大框架:潜在结果模型和结构因果模型,讨论他们各自的优缺点以及他们之间的联系,详细介绍他们之间的转化规律。
 +
 +
 +
[https://campus.swarma.org/course/2030 潜结果框架下的因果效应]
 +
 +
什么是因果呢?“因”其实就是引起某种现象发生的原因,而“果”就是某种现象发生后产生的结果。因果问题在我们日常生活中十分常见,但是不管是传统的统计学还是当下很火的大数据、机器学习,更多的是解决相关性的问题。因果问题存在于很多领域,如医疗健康、经济、政治科学、数字营销等。该课程是由浙江大学助理教授况琨讲授的,主要回答以下一些重要的问题:因果性与相关性的区别是什么?相关性有哪几种来源?如何评估因果效应?有哪些常用且前沿的方法?
 +
 +
===相关路径===
 +
*[https://pattern.swarma.org/path?id=99 因果科学与Casual AI读书会必读参考文献列表],这个是根据读书会中解读的论文,做的一个分类和筛选,方便大家梳理整个框架和内容。
 +
*[https://pattern.swarma.org/path?id=9 因果推断方法概述],这个路径对因果在哲学方面的探讨,以及因果在机器学习方面应用的分析。
 +
*[https://pattern.swarma.org/path?id=90 因果科学和 Causal AI入门路径],这条路径解释了因果科学是什么以及它的发展脉络。此路径将分为三个部分进行展开,第一部分是因果科学的基本定义及其哲学基础,第二部分是统计领域中的因果推断,第三个部分是机器学习中的因果(Causal AI)。
 
== 参考文献 ==
 
== 参考文献 ==
 
<references />
 
<references />

导航菜单