更改

跳到导航 跳到搜索
添加104字节 、 2022年9月6日 (二) 14:44
第12行: 第12行:  
[[文件:抛掷硬币的实验.png|缩略图|为了展示抛掷一枚硬币的概率,我们考虑由N枚相同的硬币组成的系综(N是一个非常大的的值),当每一枚硬币都被抛掷后,系综的“面貌”在就在这张图中被展示出来了。]]
 
[[文件:抛掷硬币的实验.png|缩略图|为了展示抛掷一枚硬币的概率,我们考虑由N枚相同的硬币组成的系综(N是一个非常大的的值),当每一枚硬币都被抛掷后,系综的“面貌”在就在这张图中被展示出来了。]]
   −
我们只要考虑由很大数目,N枚相似的硬币组成的一个系综,当这些硬币以同样的方式抛出,我们可以数出结果中硬币正反面的个数,进而得到正面的概率p和反面的概率q。统计理论希望能够预测这些概率。
+
我们只要考虑由很大数目,<math>N</math>枚相似的硬币组成的一个系综,当这些硬币以同样的方式抛出,我们可以数出结果中硬币正反面的个数,进而得到正面的概率<math>p</math>和反面的概率<math>q</math>。统计理论希望能够预测这些概率。
   −
现在考虑稍微复杂一点的掷N枚硬币的实验,由于抛掷任何一枚硬币都有两个可能的结果,那么掷N枚硬币就可以出现2×2×2×…×2=2^N个可能结果中的任何一个。如果不是只讨论一组N枚硬币,而是考虑N个这样的组(每组有N枚硬币)所组成的系综,每组都以相似的方式抛掷硬币,那么值得我们探究的问题便是,2^N个可能结果中,任何一个特殊的结果在系综中出现的概率为多大。
+
现在考虑稍微复杂一点的掷N枚硬币的实验,由于抛掷任何一枚硬币都有两个可能的结果,那么掷N枚硬币就可以出现<math>2×2×2×…×2=2^N</math>个可能结果中的任何一个。如果不是只讨论一组<math>N</math>枚硬币,而是考虑<math>N</math>个这样的组(每组有<math>N</math>枚硬币)所组成的系综,每组都以相似的方式抛掷硬币,那么值得我们探究的问题便是,<math>2^N</math>个可能结果中,任何一个特殊的结果在系综中出现的概率为多大。
    
如果每一时刻体系的统计系综中,呈现任一特殊事件的体系数目是一样的(或等价地表示为:如果这个系综中任一特殊事件出现的概率与时间无关),那么就说这个系综是与时间无关的。这样的统计描述就为平衡提供一个非常清楚的定义:如果孤立宏观体系的一个统计系综是与时间无关的,那么这样一个体系就称为处于平衡。
 
如果每一时刻体系的统计系综中,呈现任一特殊事件的体系数目是一样的(或等价地表示为:如果这个系综中任一特殊事件出现的概率与时间无关),那么就说这个系综是与时间无关的。这样的统计描述就为平衡提供一个非常清楚的定义:如果孤立宏观体系的一个统计系综是与时间无关的,那么这样一个体系就称为处于平衡。
248

个编辑

导航菜单