更改

跳到导航 跳到搜索
第46行: 第46行:  
因子分析是解决隐变量间因果结构的经典方法,然而该方法输出的隐变量结构不能够保证是背后真实发生因果机制的结构[Spirtes et al., 2000; Silva et al., 2006]。Silva等人[Silva et al., 2006]开创性地利用Tetrad条件[Spearman,1928],提出了一种两阶段学习隐变量结构的框架,即BPC(BulidPureClusters)算法+MIMBulid算法。具体来讲:以图1中上的子图为例。第一阶段利用Tetrad条件设计了三种判断测量变量间是否共享同一个父节点的规则从而去学习纯的测量模型(Pure Measurement Model,包含隐变量以及隐变量与测量变量之间的关系),即子图 (a);第二阶段把每个隐变量所对应的测量变量为代理变量,进一步学习隐变量间的因果结构 (Structural Model,包含隐变量及其因果关系),即子图 (b)。
 
因子分析是解决隐变量间因果结构的经典方法,然而该方法输出的隐变量结构不能够保证是背后真实发生因果机制的结构[Spirtes et al., 2000; Silva et al., 2006]。Silva等人[Silva et al., 2006]开创性地利用Tetrad条件[Spearman,1928],提出了一种两阶段学习隐变量结构的框架,即BPC(BulidPureClusters)算法+MIMBulid算法。具体来讲:以图1中上的子图为例。第一阶段利用Tetrad条件设计了三种判断测量变量间是否共享同一个父节点的规则从而去学习纯的测量模型(Pure Measurement Model,包含隐变量以及隐变量与测量变量之间的关系),即子图 (a);第二阶段把每个隐变量所对应的测量变量为代理变量,进一步学习隐变量间的因果结构 (Structural Model,包含隐变量及其因果关系),即子图 (b)。
 
   
 
   
 +
[[File:Pure Measurement Model.png|400px|图1:两阶段学习隐变量间因果结构示例图。最上面为真实因果图;子图(a)第一阶段所学模型,即测量模型;子图(b)子图(a)第二阶段所学模型,即结构模型。]]
   −
图1:两阶段学习隐变量间因果结构示例图。最上面为真实因果图;子图(a)第一阶段所学模型,即测量模型;子图(b)子图(a)第二阶段所学模型,即结构模型。
      
该研究证明了如果每一个隐变量至少有三个及其以上纯的测量变量(该变量有且只有一个隐变量作为其父节点),那么隐变量间的因果结构可通过测量变量去识别,输出结果达到Markov等价类。之后,为了高效地学习隐变量间的因果结构,Kummerfeld等人[Kummerfeld et al., 2016]基于更加宽泛的低秩条件[Sullivant et al., 2010],提出了FOFC(FindOneFactorClusters)算法去估计隐变量间的因果结构。
 
该研究证明了如果每一个隐变量至少有三个及其以上纯的测量变量(该变量有且只有一个隐变量作为其父节点),那么隐变量间的因果结构可通过测量变量去识别,输出结果达到Markov等价类。之后,为了高效地学习隐变量间的因果结构,Kummerfeld等人[Kummerfeld et al., 2016]基于更加宽泛的低秩条件[Sullivant et al., 2010],提出了FOFC(FindOneFactorClusters)算法去估计隐变量间的因果结构。
    
<br>
 
<br>
 +
 
====基于GIN的方法====
 
====基于GIN的方法====
 
上一节中方法利用的是变量的协方差矩阵的秩的约束(second-order statistics),忽略了变量中隐含的非高斯性(High-order statistics),导致部分因果信息被丢失。例如图2中的因果结构,包含4个隐变量和8个观察变量,上述的方法无法从这8个观察变量中去恢复隐变量间的因果结构。对于变量的非高斯而言,首先我们注意到非高斯性是可以根据观察数据轻松地检验此假设。此外,正如Cramér [1962]所述的Cramér分解定理,与高斯变量不同,非高斯分布的变量预计将无处不在,Spirtes和Zhang也同样在文献[Spirtes and Zhang 2016]中指出非高斯数据的普遍性。
 
上一节中方法利用的是变量的协方差矩阵的秩的约束(second-order statistics),忽略了变量中隐含的非高斯性(High-order statistics),导致部分因果信息被丢失。例如图2中的因果结构,包含4个隐变量和8个观察变量,上述的方法无法从这8个观察变量中去恢复隐变量间的因果结构。对于变量的非高斯而言,首先我们注意到非高斯性是可以根据观察数据轻松地检验此假设。此外,正如Cramér [1962]所述的Cramér分解定理,与高斯变量不同,非高斯分布的变量预计将无处不在,Spirtes和Zhang也同样在文献[Spirtes and Zhang 2016]中指出非高斯数据的普遍性。
7,129

个编辑

导航菜单