更改

跳到导航 跳到搜索
第93行: 第93行:  
格兰杰因果关系检验(Granger causality test)是一种在无干扰因素的情况下,一种可以用来寻找时序变量之间的因果关系的方法。Granger causality test由2003年诺贝尔经济学奖得主Clive W. J. Granger所开创,常可用于分析经济变量之间的因果关系。格兰杰因果关系检验的基本观念在于:(1) 未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量X是否对变量Y有因果影响,那么只需要估计x的落后期是否会影响y的现在值和(2)cause variable需要包含effect variable里独特非冗余的信息。假如在控制了Y变量的过去值以后,x 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称X能“Granger 影响”(Granger-cause) y。
 
格兰杰因果关系检验(Granger causality test)是一种在无干扰因素的情况下,一种可以用来寻找时序变量之间的因果关系的方法。Granger causality test由2003年诺贝尔经济学奖得主Clive W. J. Granger所开创,常可用于分析经济变量之间的因果关系。格兰杰因果关系检验的基本观念在于:(1) 未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量X是否对变量Y有因果影响,那么只需要估计x的落后期是否会影响y的现在值和(2)cause variable需要包含effect variable里独特非冗余的信息。假如在控制了Y变量的过去值以后,x 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称X能“Granger 影响”(Granger-cause) y。
   −
 
+
[[File:传统因果发现.png|200px]]
 
在算法实现上,我们可通过非参数估计(Nonparametric)的方式,比如在PC algorithm上加上时序限制,即只允许因果方向从过去指向未来并在做独立检验时去除未来信息的方式来添加Granger temporal constraints。我们通常用线性自回归模型Vector autoregessive model进行简化。当X或者Y之间含有瞬时因果关系(Instantanous relations)的情形下,我们只需将现在值(Xt+1, Yt+1)也放入自回归模型的控制变量中,并保证瞬时因果关系满足有向无环图(DAG)假设即可。
 
在算法实现上,我们可通过非参数估计(Nonparametric)的方式,比如在PC algorithm上加上时序限制,即只允许因果方向从过去指向未来并在做独立检验时去除未来信息的方式来添加Granger temporal constraints。我们通常用线性自回归模型Vector autoregessive model进行简化。当X或者Y之间含有瞬时因果关系(Instantanous relations)的情形下,我们只需将现在值(Xt+1, Yt+1)也放入自回归模型的控制变量中,并保证瞬时因果关系满足有向无环图(DAG)假设即可。
   第100行: 第100行:     
<br>
 
<br>
 +
 
====从静态时间序列中寻找因果隐变量和它们的关系====
 
====从静态时间序列中寻找因果隐变量和它们的关系====
 
在上一章节,我们讨论了传统因果发现的方法的适用场景。然而,如果我们想从大多数实际时序信号数据,如视频数据,中寻找因果关系,Granger causality是不能直接使用的。这是在这种情形下,我们观测到的时序变量,即视频中每帧的像素,它们之间并不存在直接的因果关系。这些时序变量(像素)往往是由有具有时序因果关系的因果隐变量或干扰因素生成的。在这种情型下,我们需要做因果表征学习,从时间序列中寻找因果隐变量和它们之间的时序因果关系。在一般情况下,我们可以通过表征学习学得低维的数据表征,但我们无法保证能恢复因果隐变量。在本章节中,我们将探讨在[Yao et al., 2021 & 2022]中提出的两种从静态时间序列中寻找因果隐变量和因果关系的方法。
 
在上一章节,我们讨论了传统因果发现的方法的适用场景。然而,如果我们想从大多数实际时序信号数据,如视频数据,中寻找因果关系,Granger causality是不能直接使用的。这是在这种情形下,我们观测到的时序变量,即视频中每帧的像素,它们之间并不存在直接的因果关系。这些时序变量(像素)往往是由有具有时序因果关系的因果隐变量或干扰因素生成的。在这种情型下,我们需要做因果表征学习,从时间序列中寻找因果隐变量和它们之间的时序因果关系。在一般情况下,我们可以通过表征学习学得低维的数据表征,但我们无法保证能恢复因果隐变量。在本章节中,我们将探讨在[Yao et al., 2021 & 2022]中提出的两种从静态时间序列中寻找因果隐变量和因果关系的方法。
7,129

个编辑

导航菜单